
Bakalářská práce

Webová aplikace pro tvorbu interaktivních
grafů

František Špaček

Katedra softwarového inženýrství
Vedoucí práce: Ing. Marek Suchánek, Ph.D.

16. května 2024

Název:

Student:

Vedoucí:

Studijní program:

Obor / specializace:

Katedra:

Platnost zadání:

Zadání bakalářské práce

Webová aplikace pro tvorbu interaktivních grafů

František Špaček

Ing. Marek Suchánek, Ph.D.

Informatika

Webové inženýrství 2021

Katedra softwarového inženýrství

do konce letního semestru 2024/2025

Pokyny pro vypracování

Řada webových stránek, aplikací a portálů využívá externích služeb pro vykreslování a

vkládání interaktivních grafů. Bohužel však tyto služby často nedisponují dostatečnými

možnostmi konfigurace, nelze je přizpůsobit vhodně požadovanému vzhledu, jsou

náročné na výkon, nebo mají jiné další nevýhody zabraňující snadnému použití. Cílem

této práce je vyvinout nové řešení, které redukuje tyto nedostatky a poskytne praktickou

alternativu, kterou bude možné dále jednoduše rozšiřovat. V rámci práce bude

postupováno s metodami softwarového inženýrství:

1. Analyzujte problematiku využití grafů pro vizualizaci dat (různé typy grafů, společné

vlastnosti a možnosti). Dále stručně popište již existující způsoby řešení vykreslování

grafů ve webových aplikacích.

2. Proveďte stručnou rešerši nabízených služeb poskytujících tvorbu interaktivních grafů

a jejich vkládání do jiných aplikací, webů a portálů. Shrňte klíčové vlastnosti a

nedostatky těchto řešení.

3. Sestavte požadavky a případy užití pro vlastní řešení.

4. Navrhněte vlastní řešení s ohledem na splnění požadavků (dle priorit), rozšiřitelnost a

využitelnost. Výběr technologií řádně zdůvodněte.

5. Implementujte, otestujte a zdokumentujte prototyp řešení dle návrhu.

6. Zhodnoťte přínosy vlastního řešení v porovnání s existujícími a navrhněte další možný

rozvoj aplikace.

Elektronicky schválil/a Ing. Jaroslav Kuchař, Ph.D. dne 16. listopadu 2023 v Praze.

Poděkování

Děkuji Ing. Markovi Suchánkovi Ph.D. et Ph.D. za vedení práce. Dále bych rád
poděkoval Ing. Jiřímu Jirkovcovi a Ing. Ivě Špačkové za trpělivost a podporu
při studiu.

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržo-
vání etických principů při přípravě vysokoškolských závěrečných prací.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající
ze zákona č. 121/2000 Sb., autorského zákona, ve znění pozdějších předpisů.
V souladu s ust. § 2373 odst. 2 zákona č. 89/2012 Sb., občanský zákoník, ve
znění pozdějších předpisů, tímto uděluji nevýhradní oprávnění (licenci) k užití
této mojí práce, a to včetně všech počítačových programů, jež jsou její součástí
či přílohou a veškeré jejich dokumentace (dále souhrnně jen ”Dílo“), a to všem
osobám, které si přejí Dílo užít. Tyto osoby jsou oprávněny Dílo užít jakýmkoli
způsobem, který nesnižuje hodnotu Díla a za jakýmkoli účelem (včetně užití
k výdělečným účelům). Toto oprávnění je časově, teritoriálně i množstevně ne-
omezené. Každá osoba, která využije výše uvedenou licenci, se však zavazuje
udělit ke každému dílu, které vznikne (byť jen zčásti) na základě Díla, úpra-
vou Díla, spojením Díla s jiným dílem, zařazením Díla do díla souborného či
zpracováním Díla (včetně překladu) licenci alespoň ve výše uvedeném rozsahu
a zároveň zpřístupnit zdrojový kód takového díla alespoň srovnatelným způso-
bem a ve srovnatelném rozsahu, jako je zpřístupněn zdrojový kód Díla.

V Praze dne 16. května 2024

České vysoké učení technické v Praze
Fakulta informačních technologií
© 2024 František Špaček. Všechna práva vyhrazena.
Tato práce vznikla jako školní dílo na Českém vysokém učení technickém v Praze,
Fakultě informačních technologií. Práce je chráněna právními předpisy a me-
zinárodními úmluvami o právu autorském a právech souvisejících s právem
autorským. K jejímu užití, s výjimkou bezúplatných zákonných licencí a nad rá-
mec oprávnění uvedených v Prohlášení na předchozí straně, je nezbytný souhlas
autora.

Odkaz na tuto práci
Špaček, František. Webová aplikace pro tvorbu interaktivních grafů. Bakalář-
ská práce. Praha: České vysoké učení technické v Praze, Fakulta informačních
technologií, 2024. Dostupný také z WWW: ⟨https://spacek.blue⟩.

https://spacek.blue

Abstrakt

Tato bakalářská práce se zabývá interaktivními grafy ve webovém prostředí.
Nejprve se zaměřuje na analýzu již existujících řešení a na porovnání různých
přístupů. Na základě průzkumu jsou sestaveny požadavky na aplikaci a případy
užití. Následuje návrh a implementace řešení. Na závěr je aplikace otestována,
nasazena na server a porovnána s ostatními řešeními. Výsledkem je webová
aplikace umožňující tvorbu interaktivních grafů, které lze následně vkládat na
další webové stránky.

Klíčová slova webová aplikace, grafy, knihovna

ix

Abstract

This bachelors thesis is about interactive charts in web environment. It first
focuses on analysis of existing solutions and compares different approaches. It
compiles functional and non functional requirements and use cases based on the
previous analysis. Next is the designing and implementation of the application.
Finally, the app is deployed and tested against existing solutions. The result
is a web application that enables the creation of interactive charts that can
then be inserted into other web pages.

Keywords web application, charts, library

xi

Obsah

Úvod 1

1 Cíl práce 3

2 Analýza 5
2.1 Podobné aplikace . 5

2.1.1 Google charts . 5
2.1.1.1 Prostředí . 5
2.1.1.2 Zprovoznění 6

2.1.2 Highcharts . 7
2.1.2.1 Prostředí . 7
2.1.2.2 Zprovoznění 7

2.1.3 Charts.js . 8
2.1.3.1 Prostředí . 8
2.1.3.2 Zprovoznění 8

2.1.4 Infogram . 9
2.1.4.1 Prostředí . 9
2.1.4.2 Zprovoznění 9

2.1.5 LiveGap Charts . 9
2.1.5.1 Prostředí . 10
2.1.5.2 Zprovoznění 10

2.1.6 Shrnutí . 10
2.2 Vizualizace dat . 11

2.2.1 Bodové . 11
2.2.2 Spojnicové . 12
2.2.3 Plošné . 12
2.2.4 Koláčové . 13
2.2.5 Sloupcové . 13
2.2.6 Skládané . 14

2.3 Způsoby vykreslování webových grafů 14
2.3.1 Druh grafiky . 14

2.3.1.1 Rastrová grafika 15
2.3.1.2 Vektorová grafika 15

2.3.2 Statické grafy . 15

xiii

2.3.2.1 HTML image map 16
2.3.3 Pluginy . 17

2.3.3.1 Flash Player 17
2.3.3.2 Java applet . 18

2.3.4 Canvas . 18
2.3.5 SVG . 19

2.4 Případy užití . 20
2.5 Požadavky . 22

2.5.1 Funkční požadavky . 22
2.5.2 Nefunkční požadavky 23
2.5.3 Priorita požadavků . 23

3 Volba technologií 25
3.1 Vykreslování grafů . 25
3.2 Frontend . 25

3.2.1 HTML . 26
3.2.2 CSS . 26
3.2.3 JavaScript . 26
3.2.4 Shrnutí . 27

3.3 Backend . 27
3.3.1 PHP . 27
3.3.2 Java . 27
3.3.3 Node.js . 28
3.3.4 Shrnutí . 28

3.4 Databázové technologie . 28
3.4.1 MySQL . 28
3.4.2 PostgreSQL . 29
3.4.3 MongoDB . 29
3.4.4 Shrnutí . 30

4 Návrh 31
4.1 Vykreslování grafů . 31

4.1.1 Základní vrstva . 31
4.1.2 Detekční vrstva . 32
4.1.3 Animační vrstva . 33

4.2 Aplikace na vytváření grafů . 34
4.2.1 Stránka pro úpravu grafu 34
4.2.2 Uživatelské účty . 34

4.3 API . 35
4.4 Databáze . 35

4.4.1 Doménový model . 35
4.4.1.1 Uživatel . 35
4.4.1.2 Graf . 36

4.4.2 Rozšíření . 37

5 Realizace 39
5.1 Struktura projektu . 39
5.2 Vykreslování . 40

5.2.1 Základní tvary . 40
5.2.2 Základní třída grafu . 41

xiv

5.2.2.1 Atributy: . 41
5.2.2.2 Funkce: . 43

5.2.3 Zoom . 44
5.2.4 Provedené optimalizace 44

5.2.4.1 Asynchronní procesy 44
5.3 Backend . 44

5.3.1 Dodatečné balíčky . 44
5.3.1.1 Doctrine MongoDB Bundle 44
5.3.1.2 FOS REST Bundle 45
5.3.1.3 Twig . 45

5.3.2 API . 45
5.4 Nasazení . 45

5.4.1 Webový Server . 46
5.4.2 Databázový Systém . 46

6 Testování 47
6.1 Testování nároků na výkon . 47

6.1.1 Testovací prostředí a metodika 47
6.1.2 Rychlost vykreslování grafů 48

6.1.2.1 Infogram . 49
6.1.2.2 Google Charts 49
6.1.2.3 Charts.js . 49
6.1.2.4 Highcharts . 49
6.1.2.5 Nové řešení . 49

6.1.3 Paměťová náročnost . 50
6.1.3.1 Infogram . 51
6.1.3.2 Google Charts 51
6.1.3.3 Highcharts . 51
6.1.3.4 Charts.js . 51
6.1.3.5 Nové řešení . 52

6.2 Testování s uživateli . 52
6.2.1 Registrace a přihlášení 52
6.2.2 Vytvoření nového grafu 52

6.2.2.1 Vytvoření grafu: 53
6.2.2.2 Vložení dat: 53
6.2.2.3 Úprava nového grafu: 53

6.2.3 Export dat . 54
6.2.3.1 Interakce s grafem: 54

6.2.4 Výsledky . 54

Závěr 55

Literatura 57

A Seznam použitých zkratek 61

B Obsah příloh 63

xv

Seznam obrázků

2.1 Google horizontální sloupcový graf [1] 6
2.2 Google GeoChart [1] . 6
2.3 Highcharts Master-detail graf [2] 7
2.4 Charts.js skládaný sloupcový graf [3] 8
2.5 Infogram liniový graf [4] . 9
2.6 LiveGap plošný graf [5] . 10
2.7 Bodový graf . 11
2.8 Spojnicový graf . 12
2.9 Plošný graf . 12
2.10 Koláčový graf . 13
2.11 Sloupcový graf . 14
2.12 Skládaný sloupcový graf . 14
2.13 Porovnání rastrové a vektorové grafiky [6] 15
2.14 HTML image map . 17
2.15 Graf v Adobe Flash Player [7] . 18
2.16 Model případů užití . 21

4.1 Znázornění vrstev grafu . 32
4.2 Detekce bodu uvnitř polygonu [8] 33
4.3 Rozložení stránky pro vytváření grafů 34
4.4 Doménový model . 35

5.1 Adresářová struktura projektu . 39
5.2 Základní grafové tvary . 40
5.3 Diagram třídy základního grafu . 42

6.1 Srovnání rychlosti vykreslování grafů pomocí různých služeb 48
6.2 Analýza použité poměti . 50
6.3 Srovnání spotřeby operační paměti 51

xvii

Seznam zdrojových kódů

1 ukázka image map . 16
2 Canvas . 19
3 ukázka SVG . 20

xix

Úvod

V dnešní digitální éře se stále více spoléháme na vizualizaci dat k tomu,
abychom lépe porozuměli složitým vzorcům, trendům a vztahům. Řada webo-
vých stránek, aplikací a portálů využívá externích služeb pro vykreslování
a vkládání interaktivních grafů. Bohužel však tyto služby často nedisponují
dostatečnými možnostmi konfigurace, nelze je přizpůsobit vhodně požadova-
nému vzhledu nebo mají jiné další nevýhody zabraňující snadnému použití.
Uživatel si může mezi jednotlivými službami vybírat. Pokud chce více grafů či
veliké možnosti úprav, tak určitě nějakou službu nalezne. Všechny však mají
jeden společný problém, a tím jsou zbytečně vysoké nároky na výkon.

Tato práce se snaží přinést nové řešení, které nabízí všechny výhody exis-
tujících služeb a zároveň má nižší požadavky na hardwarové prostředky a tím
pádem funguje plynule i na slabších zařízeních.

Úvodní část práce zahrnuje analýzu současného stavu problematiky a exis-
tujících řešení, identifikaci požadavků a cílů aplikace a návrh její architektury
a funkčnosti. Dále se práce zabývá implementací navrženého systému včetně
vývoje uživatelského rozhraní, backendové logiky a databáze.

Další část práce je zaměřena na testování vytvořené aplikace, které zahrnuje
ověření správnosti funkcionality, uživatelského prostředí a výkonu systému.

V závěrečné části je nové řešení nasazeno do serverového prostředí, což
zahrnuje konfiguraci, zprovoznění aplikace a zajištění bezpečnosti a dostupnosti
pro uživatele.

Výsledkem této práce je nové řešení, jež redukuje existující nedostatky a po-
skytuje praktickou alternativu, kterou bude možné dále jednoduše rozšiřovat.
Tento projekt si klade za cíl vytvořit takový nástroj, který umožní uživatelům
vytvářet, upravovat a vizualizovat grafy na základě jejich dat bez zbytečných
omezení. Vytvořené grafy budou rychlé a přívětivé i pro slabší zařízení.

1

Kapitola 1
Cíl práce

Cílem této bakalářské práce je vytvořit knihovnu pro vykreslování interaktiv-
ních grafů ve webovém prostředí a nabídnout podpůrnou aplikaci pro tvorbu
těchto grafů. Projekt si klade za cíl vyvinout nové řešení pro vytváření, upra-
vování a sdílení interaktivních grafů, které bude poskytovat uživatelům větší
flexibilitu, snadnou konfiguraci a zároveň efektivní využití výpočetních zdrojů.

Dílčími cíli je provést detailní analýzu existujících služeb a technologií v ob-
lasti tvorby a vykreslování interaktivních grafů, aby bylo možné identifikovat
klíčové potřeby uživatelů a zajistit adekvátní funkčnost nového řešení. Násle-
duje návrh a implementace knihovny a aplikace. Nakonec přichází na řadu
důkladné testování a ověření funkčnosti a uživatelské přívětivosti vytvořené
aplikace.

3

Kapitola 2
Analýza

Jako první krok v rámci tohoto projektu je vhodné provést analýzu již exis-
tujících služeb. Cílem této kapitoly je poskytnout přehled o tom, jaké funkce
a možnosti tyto služby nabízejí, jakým způsobem fungují, a jak se v praxi osvěd-
čují z uživatelského hlediska. Vedle toho je důležité zkoumat různé přístupy
a technologie, které se na trhu používají při vytváření grafů, a identifikovat
jejich silné a slabé stránky.

Na základě sesbíraných dat jsou sestaveny funkční i nefunkční požadavky
a případy užití, které pomáhají určit jakým směrem se má vývoj řešení vydat,
aby výsledný produkt byl efektivní a odpovídal uživatelským potřebám.

2.1 Podobné aplikace

2.1.1 Google charts
Charts[1] od firmy Google je v současné chvíli nejvíce používanou službou pro
vykreslování grafů na trhu. Kromě rozsáhlého výběru grafů nabízí také podrob-
nou a přehled dokumentaci, která uživatelům usnadňuje rychle se zorientovat
ve všech dostupných funkcích a v tom, jak se s Charts má interagovat. Služba
je bezplatná, a přesto zahrnuje i pokročilé funkce. Určena je pro všechny druhy
projektů, od školní výuky a tvorby osobních stránek až po rozsáhlé aplikace.

2.1.1.1 Prostředí

Uživatelé si mohou vybírat z desítek různých typů grafů, od tradičních spoj-
nicových a sloupcových grafů až po méně obvyklé formáty včetně bublinových
a paprskových grafů. Tato rozmanitost umožňuje uživatelům vybrat ten nej-
vhodnější typ grafu pro konkrétní potřeby a data. Jedním z hlavních přínosů
Google Charts je možnost rozsáhlého přizpůsobení grafů. Uživatelé mohou na
příklad měnit barvy, nastavovat osy, legendu či efekty a upravovat další vizu-
ální aspekty grafů podle požadovaných preferencí. Všechny grafy jsou v Google
Charts prezentovány ve 2D formátu, což zajišťuje jednoduchost a srozumitel-
nost prezentovaných dat.

Kromě běžných grafů, jako je vidět na obrázku 2.1, jsou také k dispozici exo-
tičtější způsoby zobrazení dat. Mezi takové patří například histogramy, Gant-
tův diagram, hierarchické stromy či vykreslování dat na mapu. Pokud tento

5

2. Analýza

Obrázek 2.1: Google horizontální sloupcový graf [1]

základní výběr nestačí, tak je lze případě potřeby také spojit více grafů dohro-
mady, čímž se násobně zvýší počet dostupných možností.

Obrázek 2.2: Google GeoChart [1]

Jednou z klíčových vlastností Google Charts je jeho interaktivita. Uživa-
telé mohou snadno zvýraznit jednotlivé hodnoty v grafu, což umožňuje rychlou
identifikaci klíčových datových bodů a trendů. Dále mohou zobrazit podrob-
nější informace o datech přímo v grafu, což poskytuje hlubší pohled do dat
a umožňuje lepší porozumění prezentovaným informacím. Případně si je může
vyznačit v legendě, která může být volitelně zobrazena.

2.1.1.2 Zprovoznění

Přestože Charts vyniká ve finálním vykreslení grafu a v přívětivosti pro kon-
cového uživatele, nedá se to samé říct o implementaci na webové stránky.

Nejprve je zapotřebí naimportovat JavaScriptové knihovny které se starají
o samotné vykreslování. Následně je nutné vytvořit div, do kterého se graf

6

2.1. Podobné aplikace

vykreslí pomocí SVG1. Všechny možnosti grafu se nastavují pomocí scriptu, což
je velice nepřehledné a existuje zde proto mnoho možností pro chybu. Existují
dvě možnosti vkládání dat. Pro první možnost musíme všechna data, se kterými
chceme pracovat, natvrdo zapsat do kódu. Výhodou je, že není potřeba žádná
externí služba a všechno se odehrává pouze na úrovni dané stránky, zároveň se
tím však velice komplikují případné budoucí změny.

2.1.2 Highcharts
HighCharts[2] se specializuje spíše na odborné, a tedy více podrobné grafy
s velikým množstvím zobrazovaných dat. Jedná se o komerční službu, která
nabízí i bezplatnou verzi, kde jsou však uživateli přístupné pouze základní
funkce. Pokud chce uživatel využívat všech dostupných funkcí, musí si zaplatit
licenci, které začínají na částce čtyři tisíce korun za rok.

2.1.2.1 Prostředí

HighCharts nabízí širokou škálu grafických možností zahrnující přibližně stovku
různých typů grafů. Tento rozsáhlý výběr zahrnuje bodové, bublinové a paprs-
kové grafy včetně jejich trojrozměrných variant. Jsou schopny zobrazovat velké
množství dat současně, a to včetně různých typů popisků a detailních infor-
mací, což je činí ideálním nástrojem pro prezentaci komplexních datových sad.
Kromě grafů jsou k dispozici i další možnosti zobrazení dat, které mohou být
využity pro různé účely a potřeby uživatelů.

Obrázek 2.3: Highcharts Master-detail graf [2]

2.1.2.2 Zprovoznění

Implementace HighCharts je velice komplikovaná a běžný uživatel by si s ní
nevěděl rady. Pro uvedení do provozu je zapotřebí velikého množství knihoven
a dalších služeb. Tato složitost je dána i tím, že není služba vázána pouze
na jednu platformu nebo jeden programovací jazyk, mezi něž patří například
JavaScript, Python, .NET, R a další.

1Scalable Vector Graphics

7

2. Analýza

I když může být proces nastavení z počátku složitý, tak HighCharts nabízí
komplexní a intuitivní uživatelské rozhraní pro správu a úpravu grafů po je-
jich nasazení. To znamená, že po úvodní instalaci a konfiguraci není nutné stále
zasahovat do kódu. Uživatelé mohou snadno provádět změny, aktualizace a při-
způsobení přímo z integrovaného uživatelského prostředí HighCharts. Data je
možné vkládat přímo, nebo automaticky po připojení k databázi.[9]

2.1.3 Charts.js
Charts.js[3] je populární open-source JavaScriptová knihovna, jejímž cílem je
jednoduché vykreslování statických a interaktivních grafů. Je navržena s ohle-
dem na potřeby webových vývojářů a designérů, kteří hledají efektivní nástroj
pro vizualizaci dat na svých webových projektech.

2.1.3.1 Prostředí

Knihovna nabízí pouze devět základních grafů, jako jsou spojnicové, sloupcové,
plošné či bodové. Výhodou je, že je možné různé druhy grafů kombinovat,
čímž se výrazně zvyšuje počet možných zobrazení dat. Vizuální stránku lze
v jednoduchých mezích přizpůsobovat, to zahrnuje barvy, popisky, rozložení
grafu, legendu a další.

Grafy jsou v základu statické, ale mohou být částečně interaktivní, nebo
dokonce i animované, což vylepšuje vizuální stránku grafu a může tak zlepšit
uživatelský zážitek. Pokud jsou tyto funkce využity, tak to má bohužel silný
dopad na výpočetní náročnost. Tyto funkce jsou na slabších zařízeních, jako
jsou starší počítače či mobilní zařízení, spíše na obtíž.

Obrázek 2.4: Charts.js skládaný sloupcový graf [3]

2.1.3.2 Zprovoznění

Charts.js sice vyžaduje určité znalosti fungování webů, ale samotná implemen-
tace příliš náročná není. Po připojení knihovny je třeba vytvořit canvas, na
který se graf vykreslí, a krátký skript s daty a nastaveními. Proces je jedno-
dušší než u Google Charts, je to však především kvůli tomu, že je k dispozici
méně funkcí. Tyto základní funkce lze však rozšířit pomocí pluginů, které při-
dávají například stínování, gradienty barev či interaktivní legendu.

8

2.1. Podobné aplikace

2.1.4 Infogram
Infogram[4] je webová služba pro tvorbu interaktivních infografik a datových
vizualizací. Je primárně určena pro snadné vytváření interaktivních vizuálních
prvků, takže je přívětivá i pro lidi bez programátorských a grafických znalostí.
Přestože to není hlavním zaměřením, tak Infogram také poskytuje nástroje
a funkce, které umožňují vytvářet atraktivní a funkční grafy pro různé účely.

Jedná se o placenou službu, jež však nabízí také bezplatnou verzi s poměrně
širokým spektrem funkcí, které jsou dostatečné pro většinu běžných potřeb.
Placené plány zahrnují dodatečné funkce, například více šablon pro tvorbu
grafů či statistiky o zobrazeních, interakcích a sdílení.

2.1.4.1 Prostředí

Služba nabízí okolo stovky různých grafů. Toto veliké množství je však vyvá-
ženo tím, že jednotlivé grafy umožňují jen velmi základní možnosti úprav. To
znamená, že pokud uživatel není spokojen s předdefinovanými možnostmi grafů,
nemá možnost je významně upravit. Pro tvorbu projektů Infogram nabízí uži-
vatelům jednoduché a intuitivní grafické rozhraní. Uživatelé mohou pracovat
s objekty a ikonami, které mohou snadno přetáhnout a vložit do svých pro-
jektů pomocí myši, což zjednodušuje proces tvorby a umožňuje rychle vytvářet
profesionálně vypadající vizualizace a infografiky.

Obrázek 2.5: Infogram liniový graf [4]

2.1.4.2 Zprovoznění

Vytvořené vizualizace lze jednoduše vkládat na sociální sítě díky integrovanému
rozhraní, případně je možné je vložit na webové stránky jako iFrame či GIF2.
Data nelze vložit přímo do grafu jako u jiných služeb, místo toho je nutné data
importovat do aplikace nebo využít externí databáze. Pro import je možné
využít grafické rozhraní nebo jednoduché REST3 API4.

2.1.5 LiveGap Charts
Služba LiveGap Charts[5] umožňuje vytvářet jednoduché grafy bez nutnosti
se registrovat. Tato platforma je proto ideální pro ty, kteří hledají jednoduchý
a přímý způsob, jak vizualizovat svá data. Pokročilejší funkce jsou placené, ale

2Graphics Interchange Format
3Representational State Transfer
4Application Programming Interface

9

2. Analýza

na rozdíl od podobných služeb je cena pouze pět dolarů měsíčně. Grafy jsou
velmi nenáročné na výkon, ale mají jen velmi omezené možnosti interaktivity.

2.1.5.1 Prostředí

Při vytváření grafů v LiveGap Charts je k dispozici uživatelsky přívětivé webové
rozhraní, které je snadno ovladatelné i pro začátečníky. V rámci tohoto roz-
hraní je k dispozici menu pro úpravy vzhledu grafu a jednoduchý tabulkový
editor, který umožňuje snadné zadávání a organizaci dat. Uživatelé mohou data
vkládat ručně přímo do editoru, nebo je importovat z externích zdrojů pomocí
běžných datových formátů, včetně XML5, CSV6 a XLS7.

Obrázek 2.6: LiveGap plošný graf [5]

2.1.5.2 Zprovoznění

Na stránku lze vytvořené grafy vložit několika způsoby. První možností je graf
exportovat jako statický obrázek, nebo vytvořit animovaný GIF. Tato metoda
má samozřejmě tu nevýhodu, že grafy nelze po exportování upravovat. Pro vlo-
žení dynamického grafu do webové stránky je zapotřebí placená verze. Proces
je to velmi jednoduchý a vyžaduje vložení pouze jednoho elementu. Nevýhodou
však je, že data musí být uložena ve službě LiveGap a není možné je načítat
například z externí databáze.

2.1.6 Shrnutí
V této kapitole bylo uvedeno pět služeb, které sice všechny slouží k vykreslování
grafů, ale jsou zaměřeny na velmi rozdílné cílové skupiny a potřeby uživatelů.
Některé z těchto služeb jsou plně zdarma a dostupné pro každého, zatímco
jiné nabízejí pokročilé funkce za měsíční poplatky, které mohou dosáhnout
i desítek tisíc korun měsíčně. Některé jsou open-source a je možné se podívat
i na vnitřní fungování, u ostatních je možné vycházet pouze z toho, k čemu

5Extensible Markup Language
6Comma Separated Values
7Excel spreadsheet

10

2.2. Vizualizace dat

má přístup běžný uživatel. Přestože se jednotlivé služby liší v ceně a zaměření,
mají několik společných vlastností.

Všechny služby nabízejí veliké množství grafů, a proto je tato aplikace musí
obsahovat také, jinak by měla značnou nevýhodu oproti již zavedeným řeše-
ním. Další společnou vlastností je flexibilita v úpravách a přizpůsobení vzhledu
grafů. Uživatelé mohou upravovat barevné schéma, styly a další estetické prvky
grafů podle svých potřeb a preferencí. Ačkoli se úroveň interaktivity mezi služ-
bami může lišit, všechny nabízejí základní interaktivní funkce, jako je zobrazení
detailů hodnot po najetí myší.

Služby však také mají i společné nedostatky. Hlavním z nich je vysoká
náročnost na výpočetní výkon, což může zpomalit načítání webových stránek
a negativně ovlivnit uživatelský zážitek.

2.2 Vizualizace dat

Grafy jsou jedním z nejlepších nástrojů pro vizualizaci dat. Zvládnou velmi
rychle předat veliké množství dat a umožňují nám vidět vzory, trendy a ano-
málie, které by jinak mohly zůstat skryty v tabulkách či číselných seznamových
formátech. V porovnání s tabulkami jsou grafy často přehlednější a intuitiv-
nější, což umožňuje rychlejší a snadnější interpretaci dat. [10]

Následující sekce stručně uvádí nejčastější druhy grafů, s nimiž se mohou
uživatelé praxi nejčastěji setkat. Každý typ grafu má své specifické vlastnosti
a výhody, které se hodí pro různé situace a typy dat, a proto je vhodné mít
alespoň základní přehled.

2.2.1 Bodové

Obrázek 2.7: Bodový graf

Bodové grafy jsou základním nástrojem pro vizualizaci datových bodů na
rovině. Každý bod v grafu reprezentuje jednu konkrétní hodnotu nebo pozo-
rování. Tyto datové body mohou být v závislosti na datech rovnoměrně nebo
nerovnoměrně rozloženy napříč vodorovnou osou. Tento typ grafu je ideální pro
zobrazování vztahů mezi dvěma proměnnými a umožňuje identifikovat vzory,
korelace a odlehlé hodnoty. Někdy se jim proto říká korelační diagramy. V bo-
dových grafech jsou jednotlivé body umístěny na kartézské soustavě souřadnic.
Mohou být v některých případech i trojrozměrné a každý bod tedy popisují tři

11

2. Analýza

souřadnice, ale v praxi se tato verze příliš nepoužívá kvůli špatné přehlednosti.
Bodové grafy jsou často využívány k analýze dat ve vědeckém výzkumu, eko-
nomii, sociologii a dalších disciplínách, kde je potřeba vizualizovat vztahy mezi
proměnnými. [11]

2.2.2 Spojnicové
Spojnicové grafy se používají k vizualizaci vztahů mezi body v čase nebo v zá-
vislosti na jiné proměnné. Tento typ grafu je vhodný pro zobrazování trendů,
vývoje a dynamiky dat. Ve spojnicových grafech jsou body spojeny čarami,
které zobrazují vztah mezi nimi. Tyto čáry obvykle představují vývoj dat v čase
nebo vztah mezi dvěma proměnnými. Na rozdíl od bodového grafu jsou data
téměř vždy rovnoměrně rozprostřena po celé délce vodorovné osy. Spojnicové
grafy jsou často využívány k vizualizaci dat jako je vývoj cen, teplot nebo akcií.
[11]

Obrázek 2.8: Spojnicový graf

2.2.3 Plošné

Obrázek 2.9: Plošný graf

Plošné grafy vizualizují data jako plné oblasti, kde každá oblast reprezentuje
jednu datovou kategorii. Tyto grafy jsou ideální pro srovnávání hodnot mezi

12

2.2. Vizualizace dat

různými kategoriemi a pro zjištění jejich relativního podílu. Jednou z hlavních
výhod plošných grafů jednoduchost interpretace, protože plné plochy posky-
tují přehledný obraz o datech a umožňují snadno vizuálně porovnávat velikosti
jednotlivých kategorií. Plošné grafy mohou nést i některé nevýhody. Mezi ně
patří možná ztráta podrobností, pokud je potřeba zobrazit detailnější informace
nebo individuální hodnoty. Mohou být často viděny v oblastech jako marke-
ting, ekonomie nebo třeba ve zdravotnictví, pro srovnání prevalence různých
onemocnění.

2.2.4 Koláčové
Koláčové grafy jsou kruhové diagramy s různě barevnými výsečemi, které vi-
zualizují data jako procentuální části celku. Každý segment v grafu odpovídá
určitému podílu celkového množství. Tento podíl lze vyjádřit buď procenty,
nebo přímo hodnotami jako jsou gramy či litry.

Koláčové grafy jsou často využívány pro prezentaci procentuálního rozlo-
žení různých položek, jako jsou například náklady, zisky nebo populace. Jsou
také vhodné pro zobrazení struktury portfolia, podílu tržního segmentu a de-
mografických trendů. Mohou však být méně efektivní při zobrazení velkého
počtu kategorií a mohou být matoucí, pokud jsou některé segmenty příliš malé
na to, aby byly přehledné.

Obrázek 2.10: Koláčový graf

2.2.5 Sloupcové
Sloupcové grafy jsou vynikajícím nástrojem pro vizualizaci dat, které mají jasně
definované kategorie a hodnoty. Data reprezentují pomocí svislých sloupců, kde
výška sloupce odpovídá hodnotě datového bodu. Jsou ideální pro srovnávání
hodnot mezi různými kategoriemi a rychlé pochopení relativních hodnot. Tento
typ grafu je často využíván v různých oblastech, jako jsou ekonomie, marketing,
nebo vědecký výzkum, kde je potřeba srovnávat hodnoty mezi různými skupi-
nami nebo kategoriemi dat. Díky své jednoduché interpretaci a přehlednému
zobrazení je sloupcový graf oblíbeným nástrojem nejen pro analyzování dat, ale
i pro prezentaci výsledků a komunikaci významných trendů nebo rozdílů.[12]

13

2. Analýza

Obrázek 2.11: Sloupcový graf

2.2.6 Skládané

Skládané grafy představují pokročilejší formu sloupcových grafů, kde každý
sloupec zobrazuje kumulativní hodnoty všech kategorií namísto jednotlivých
hodnot. Skládané grafy jsou užitečné pro porovnání celkové velikosti a struk-
tury různých skupin dat a používají se proto při vizualizaci trendů, jako jsou
například příjmy, náklady nebo produkční výstupy.

Obrázek 2.12: Skládaný sloupcový graf

2.3 Způsoby vykreslování webových grafů

Existuje mnoho různých způsobů, jak lze interaktivní grafy vytvářet. Každý
přístup má své vlastní výhody, avšak i určité nedostatky, ať už se jedná o slo-
žitost implementace, nároky na výpočetní výkon nebo omezení v možnostech
vizualizace. Tato sekce se zaměřuje na analýzu několika vybraných metod, od
historických až po nově zaváděné.

2.3.1 Druh grafiky

Počítače dokážou pracovat s rastrovou a vektorovou grafikou. Každá technolo-
gie pro vykreslování grafů tak používá alespoň jednu z nich.

14

2.3. Způsoby vykreslování webových grafů

2.3.1.1 Rastrová grafika

Rastrové obrázky jsou ukládány jako mřížka jednotlivých buněk neboli pixelů.
Každý pixel má přiřazenou hodnotu určující jeho barvu a intenzitu, což umož-
ňuje vytvářet detailních obrázků. Rastrová grafika je často používána pro fo-
tografie a komplexní obrázky, a to díky své schopnosti zachytit velké množství
detailů. Nicméně při zvětšení rastrového obrázku je možné pozorovat ztrátu
kvality a zubaté hrany, což může být nevýhodou při manipulaci s obrázky
ve velkých rozměrech nebo v případech, kdy potřebujeme přiblížit jednotlivé
detaily. Typickými formáty rastrové grafiky jsou JPEG8, PNG9 a GIF.[13]

2.3.1.2 Vektorová grafika

Vektorová grafika je typ digitálního obrazu, který je definován pomocí mate-
matických vzorců a vztahů mezi objekty na rozdíl od konkrétních pixelů, jak
je tomu u rastrové grafiky. Tento přístup umožňuje vytváření obrázků založe-
ných na geometrických tvarech, jako jsou přímky, křivky a základní jednoduché
tvary. Díky tomu jsou vektorové obrázky nezávislé na rozlišení a lze je libovolně
zvětšovat či zmenšovat bez ztráty kvality.

Vektorová grafika je ideální pro tvorbu log, ikon, diagramů, fontů a dalších
grafických prvků, které vyžadují jasnou podobu a čistý vzhled při mnoha přípa-
dech využití. Nehodí se však pro zachycování komplexních obrázků, jako jsou
například fotografie. Obecným formátem vektorové grafiky je SVG a další for-
máty pro konkrétní případy využití jako například AI pro Adobe Ilustrator.[14]

Obrázek 2.13: Porovnání rastrové a vektorové grafiky [6]

2.3.2 Statické grafy
Tato metoda byla využívána již v počátcích HTML10 a lze na ni často narazit
i dnes. Nejednoduší variantou je vložení již vygenerovaného grafu do webové
stránky ve formě statického obrázku, přičemž nezáleží na tom, jakým způso-
bem byl tento obrázek původně vytvořen. Tento přístup nabízí mnoho výhod,
jako je například jednoduchá implementace a nízké nároky na výkon klienta

8Joint Photographic Experts Group
9Portable Network Graphics

10Hypertext Markup Language

15

2. Analýza

i serveru. S tím se samozřejmě pojí i značné nevýhody. Je náročné aktuali-
zovat data, jelikož je potřebné vygenerovat a vložit úplně nový graf, webová
stránka proto nemůže rychle reagovat na případně změny. Další nevýhodou je
minimální možnost interakce na straně webového prohlížeče, protože se jedná
o statický, prvek který nedokáže reagovat na akce uživatele. Grafy mohou být
špatně čitelné na malých obrazovkách, a naopak na velikých obrazovkách může
docházet ke ztrátě kvality.[15] I přes tyto omezení tento klasický přístup stále
nachází své uplatnění, zejména v kontextu článků, blogů a jiných statických
webových stránek, kde není potřeba často aktualizovat obsah grafu a hlavním
cílem je vizuálně zobrazit informace čtenářům.

Další variantou je, že se tento statický graf generuje při načítání stránky.
Po převzetí požadavku od od uživatele je tedy na straně serveru vytvořit nový
graf z nahraných dat. Může k tomu být využito PHP, Python, Java nebo další
jazyky či externí nástroje a aplikace, přičemž může být výsledek rastrový nebo
vektorový. Tento přístup umožňuje zaručit, že graf vždy obsahuje aktuální in-
formace. Nicméně, tento přístup může mít i své stinné stránky. Je značně složi-
tější na implementaci než první varianta a generování grafu při každém načtení
stránky může významně zvýšit výpočetní náročnost. To může vést k pomalej-
šímu načítání stránek a zvýšení zátěže serveru, zejména pokud je na stránce
více grafů nebo pokud je server zatížen vysokým počtem požadavků.[9] Tyto
nedostatky lze částečně vyřešit pomocí cache, kde jsou výsledky na určitou
dobu ukládány, aby se stejné grafy nemusely zbytečně generovat vícekrát.

2.3.2.1 HTML image map

Graf samotný je kompletně statický, ale existují způsoby, jak jim přidat alespoň
minimální možnosti interaktivity a zvýšit jejich funkčnost. Jedním takovým je
použití prvku MAP, který umožňuje vytvářet interaktivní obrazové mapy na
straně klienta a spojuje se s různými prvky, jako jsou IMG, OBJECT nebo
INPUT. S jeho pomocí je možné definovat oblasti mapy a přidružené odkazy,
což umožňuje uživatelům prozkoumávat obrázky na webových stránkách a pro-
vádět s nimi různé akce.

<map name="primary">
<area shape="rect" coords="500,100,60,200"

href="detail.html" alt="Jablka: 7"/>
</map>

Zdrojový kód 1: ukázka image map

Využívá AREA prvků, které nemají žádný viditelný obsah a pouze vyzna-
čují oblasti na přidruženém prvku, jak je znázorněno na obrázku 2.14. Tyto
elementy mohou obsahovat odkazy na další stránky, takže si uživatel může
rozkliknout nějakou položku v grafu a následně bude přesměrován na stránku
s detailními informacemi.

Dalším využitím je zlepšení přístupnosti webových stránek. S každou oblastí
totiž může být spojený text, jak je vidět v ukázce 1, který mohou využívat
například čtečky pro nevidomé uživatele a zpřístupnit jim tak alespoň základní
informace o grafu.[16]

16

2.3. Způsoby vykreslování webových grafů

Obrázek 2.14: HTML image map

2.3.3 Pluginy
Jako reakce na omezené schopnosti webových prohlížečů byly vytvořeny ná-
stroje třetích stran, kterým se říká zásuvné moduly neboli pluginy, které měly
za cíl tyto nedostatky řešit.

Jedním z hlavních zaměření bylo zajištění dynamických prvků, která dokáží
reagovat na akce uživatelů, jako jsou kliknutí, přejetí myší nebo zmáčknutí klá-
ves. Díky těmto funkcím se tyto pluginy staly nepostradatelnými pro tvorbu
webových aplikací, online her a interaktivních webových stránek, zejména před
zavedením standardu HTML5, který přinesl řadu vylepšení v oblasti interak-
tivity a multimediálních možností přímo do webových prohlížečů.

V kontextu interaktivních grafů nabídly tyto zásuvné moduly možnosti,
které byly v tehdejší době revoluční. Mimo základních vizualizačních prvků
mohly grafy nyní obsahovat animace, zvýrazňování konkrétních hodnot, de-
tailní informace nebo sofistikované filtry pro lepší prohlížení a analýzu dat.
Tímto způsobem se interaktivní grafy staly mnohem flexibilnějšími a užitečněj-
šími nástroji pro prezentaci a interpretaci komplexních dat v online prostředí.[17]

2.3.3.1 Flash Player

Nejznámějším představitelem pluginů je Adobe Flash Player. Byl vytvořen
v roce 1996 společností Macromedia, která byla v roce 2006 koupena společ-
ností Adobe Systems. Zprvu byl využíván pouze pro přidávání dynamických
prvků běžným webovým stránkám jako je zvuk, video či dynamické rozhraní,
později se v něm však vytvářely i celé aplikace. V počátcích byl Flash player
používán pro přehrávání YouTube videí. Vznikla dokonce nová kategorie her,
které by nebylo před vznikem tohoto pluginu vůbec možné vytvořit.

Díky svým rozsáhlým schopnostem si našel využití i při vykreslování webo-
vých grafů, jak je vidět na následujícím obrázku 2.15. Jednalo se o univerzální
nástroj, takže vzhled grafů nebyl nijak omezen. Existují knihovny, které tuto
tvorbu usnadňují. Mohly být i trojrozměrné, což však mělo odpovídající dopad
na výpočetní náročnost a rychlost aplikace.

Přestože byl Flash hojně využíván, tak nebyl běžně součástí webových pro-
hlížečů, takže jej bylo potřeba doinstalovat, nebo se smířit s tím, že veliká část
funkcí nebude vůbec fungovat. Některá mobilní zařízení Flash nepodporovala
a nebylo jej možné ani doinstalovat. Protože se jednalo o další program, který
musel být využíván pro prohlížení webu, tak to mělo velmi negativní dopad na

17

2. Analýza

Obrázek 2.15: Graf v Adobe Flash Player [7]

výkon a tedy i rychlost odezvy a načítaní. Začal se proto postupně nahrazovat
lepšími řešeními.

Co však nejvíce přispělo k pádu Flash Playeru byla bezpečnost, nebo spíše
její nedostatek. Plugin mohl přímo pracovat s prostředky počítače a stal se
proto častým cílem útoků. První chyby byly odhaleny v roce 2002. Často nebylo
ani nutné aby uživatel prováděl jakékoliv akce, stačilo pouze otevřít danou
stránku. I přes známé bezpečnostní chyby byl Flash se záplatami používán až
do konce roku 2020, kdy byla oficiálně ukončena podpora.[18]

2.3.3.2 Java applet

Dalším takovým pluginem je Java Applet. Využívá takzvaný bytecode, který
je spouštěn v prostředí Virtual Java Machine. Tím se zaručuje přenositelnost
kódu, který lze následně spouštět v různých prohlížečích a zařizeních. Aby
mohly takovéto aplikace fungovat, tak je často nutné provést instalaci pluginu
do prohlížeče. Applety mohou být ovládány i pomocí JavaScriptu, což umož-
ňuje dynamickou interakci s HTML. Při vkládání Java Appletu do webových
stránek se původně využíval zastaralý tag <applet>. V současné době je však
doporučeno používat modernější tag <object>, který je více standardní a pod-
porován všemi moderními prohlížeči.[19]

Plugin byl vytvořen v roce 1995 společností Oracle a konec podpory byl
ohlášen v roce 2017. Byl tedy souběžně s Adobe Flash Playerem, ale nikdy
nedosáhl stejného rozšíření a popularity. I přesto zanechává Java Applet svůj
odkaz jako jedna z prvních technologií, která umožnila tvorbu dynamického
obsahu na webových stránkách a přispěla k růstu a vývoji internetu.[20]

2.3.4 Canvas
Canvas je jedním z klíčových prvků HTML5. Jedná se o bitmapovou (rastro-
vou) oblast na webové stránce, kterou lze dynamicky manipulovat pomocí Ja-
vaScriptu. Tento nástroj umožňuje programátorům kreslit různé tvary, text

18

2.3. Způsoby vykreslování webových grafů

a obrázky přímo v prohlížeči. Vývojáři mohou využívat barvy, rotace, gradi-
enty a další grafické techniky k vytváření složitých vizuálních efektů. Na webové
stránky se tento prvek vkládá pomocí tagu <canvas>, jak je vidět v ukázce 2.

Přistupovat k němu lze pomocí API, které je také součástí HTML5 a umož-
ňuje programátorům plnou kontrolu nad vykreslováním. Díky své flexibilitě
a výkonnosti může být canvas v kombinaci s WebGL nebo dalšími renderova-
cími nástroji využit i pro vykreslování složitých 3D tvarů, interaktivních vizu-
alizací a her, což značně rozšiřuje možnosti webového vývoje. Tato volnost je
však vykoupena složitějším ovládáním canvasu. Jedná se o statické plátno, na
kterém se obsah vykreslí, veškeré interakce a vykreslování musí být proto řešeny
externě pomocí JavaScriptu. Text či jakékoliv jiné prvky nelze po vykreslení
upravovat, je potřeba je vykreslit znovu s implementovanými změnami.

Jednou z klíčových výhod canvasu je jeho široká dostupnost, protože je
pevnou součástí HTML standardu. To znamená, že je podporován ve všech
běžných prohlížečích, což zajišťuje konzistentní zobrazení a funkčnost aplikací
napříč různými platformami a zařízeními.[21]

<canvas id="canvas" width="200" height="100"></canvas>

Zdrojový kód 2: Canvas

2.3.5 SVG
SVG (Scalable Vector Graphics) je formát založený na XML určený pro kreslení
vektorové grafiky. Vektorová grafika umožňuje detailní a škálovatelné designy,
což je ideální pro moderní webové stránky a aplikace.

Stejně jako HTML poskytuje prvky pro definování základních stavebních
bloků webové stránky, jako jsou záhlaví, odstavce a tabulky, SVG nabízí prvky
pro kreslení základních tvarů. To zahrnuje kruhy, obdélníky, mnohoúhelníky
a jednoduché i složité křivky. Každý dokument SVG je strukturován pomocí
kořenového prvku <svg>, který definuje oblast pro vykreslování, a základních
tvarů, které dohromady tvoří komplexní vektorovou grafiku. Jednoduchý pří-
klad lze vidět v ukázce 3. Kromě toho existuje prvek <g>, který umožňuje
seskupení několika základních tvarů do logických celků, což usnadňuje organi-
zaci a manipulaci s grafickými prvky.[22]

SVG je integrováno do Document Object Modelu (DOM), což umožňuje
JavaScriptu přistupovat ke všem objektům a manipulovat s nimi dynamicky.
Mohou reagovat na události jako je je pohyb myší, kliknutí a další. To velmi
usnadňuje vývoj interaktivních aplikací. Stejně jako v HTML lze i v SVG prvky
stylizovat pomocí CSS, což poskytuje vývojářům široké možnosti přizpůsobení
vzhledu a stylu grafických prvků. Díky těmto vlastnostem bývá často první
volbou pro vykreslování webových grafů, což potvrdila i analýza existujících
aplikací. Nevýhodou tohoto přístupu je, že se může pomaleji vykreslovat a má
větší nároky na výkon a paměť.[23]

19

2. Analýza

<svg width="100" height="100">
<circle cx="50" cy="50" r="40" stroke="black" fill="blue"/>
<text x="30" y="55" font-size="20">SVG</text>

</svg>

Zdrojový kód 3: ukázka SVG

2.4 Případy užití

1. Registrace

• Uživatelé mohou vytvořit nové účty prostřednictvím registračního
formuláře.

• Při registraci vyplní své osobní údaje, jako je e-mail a heslo.
• Registrace je realizována pomocí zabezpečeného procesu ověření iden-

tity.

2. Přihlášení

• Registrovaní uživatelé se mohou přihlásit pomocí svého uživatel-
ského emailu a hesla.

• Přihlašovací proces zahrnuje ověření uživatelských údajů pomocí
bezpečného protokolu pro přenos dat (HTTPS) a metody hasho-
vání hesel.

3. Vytvoření grafu

• Aplikace uživatelům umožňuje vytvářet nové grafy.

4. Import dat

• Aplikace umožňuje uživatelům importovat svá data pro tvorbu grafů
ze souboru CSV nebo jiných podporovaných formátů.

• Import dat je prováděn pomocí robustního mechanismu zpracování
souborů.

5. Upravování dat v tabulce

• Uživatelé mají možnost upravovat svá data přímo v tabulkovém edi-
toru v aplikaci.

• Editor poskytuje pokročilé funkce pro manipulaci s daty, jako je
přidávání, mazání a úprava řádků a sloupců.

6. Nastavení grafu

• Uživatelé mohou detailně nastavit různé parametry grafu, jako jsou
popisky os, barvy sloupců, rozsah hodnot, volba barevnosti pozadí
grafu, zapnutí horizontálního či vertikálního zoomu a další.

• Nastavení grafu je prováděno prostřednictvím intuitivního uživatel-
ského rozhraní.

20

2.4. Případy užití

Obrázek 2.16: Model případů užití

7. Zobrazení grafu

• Po nastavení parametrů grafu mohou uživatelé zobrazit finální vi-
zualizaci svých dat v podobě grafu přímo v aplikaci.

• Graf je zobrazován v reálném čase s možností dynamického přizpů-
sobení.

21

2. Analýza

8. Vložení grafu na externí webové stránky

• Uživatelé mohou vložit svůj vytvořený graf na externí webové stránky
pomocí kódu pro vložení (embed code).

• Tato funkce umožňuje sdílení vytvořených grafů s ostatními uživateli
nebo jejich integraci do vlastních webů.

9. Přístup k aplikaci pomocí API

• Aplikace poskytuje uživatelům možnost přístupu k funkcím a datům
prostřednictvím API.

• API umožňuje automatizaci procesů, integraci s dalšími systémy
a vývoj vlastních aplikací nebo rozšíření.

2.5 Požadavky

Na základě analýzy existujících služeb je sestrojen seznam požadavků, který
určuje jednotlivé dílčí cíle práce.

2.5.1 Funkční požadavky
• Vykreslování grafů

– Podpora různých typů grafů:
∗ Sloupcové
∗ Koláčové
∗ Prstencové (donutové)
∗ Bodové
∗ Spojnicové (čárové)
∗ Plošné
∗ Skládané
∗ Radarové (paprskové)
∗ Histogramy
∗ Kvartilové
∗ Stromové

– Interaktivita grafů
∗ Možnost zobrazení detailu při najetí myší
∗ Zvýraznění dat pomocí interaktivní legendy
∗ Zoom a panning pro detailní prohlížení grafů
∗ Rozsáhlé možnosti grafických úprav

• Aplikace na tvorbu grafů

– Možnost exportu a sdílení grafů ve formátech jako PNG, JPG
– Funkce importu a aktualizace dat z CSV, Excelu a dalších formátů
– Integrovaný tabulkový editor pro manipulaci s daty
– Možnost vytváření šablon pro opakované použití grafů

22

2.5. Požadavky

• Správa dat

– API pro jednoduchou integraci a správu dat
– Automatická aktualizace datových sad
– Možnost připojení k databázím a externím API pro dynamickou

aktualizaci dat

• Uživatelské rozhraní

– Intuitivní design a navigace
– Přizpůsobitelné styly grafů
– Nastavitelné osy, legenda, barvy, popisky, volba barevnosti pozadí

grafu, zapnutí horizontálního či vertikálního zoomu...

2.5.2 Nefunkční požadavky
• Rozšiřovatelnost

– Schopnost snadného rozšíření o nové funkce a typy grafů
– Modulární architektura pro snadnou správu

• Rychlost

– Optimalizace výkonu pro rychlé načítání a vykreslování grafů
– Efektivní zpracování a vykreslování velkých datových sad
– Minimalizace zpoždění interakce uživatele s grafy při provádění akcí,

jako je přibližování a oddalování

• Kompatibilita

– Podpora všech moderních prohlížečů a operačních systémů
– Responzivní design pro použití na různých zařízeních (mobilní, tablet,

desktop)

2.5.3 Priorita požadavků
Tato práce byla zaměřena na to, aby fungovaly všechny základní požadavky
a zároveň byla aplikace připravena na jejich další rozšíření. To znamená, že je
hlavní implementovat klíčové požadavky, jako je API nebo uživatelské rozhraní.

Není však cílem zahrnout všechny grafy, či formáty souborů pro import,
protože budou tyto funkce snadno v budoucnosti implementovatelné díky spl-
nění požadavku rozšiřovatelnosti.

23

Kapitola 3
Volba technologií

3.1 Vykreslování grafů

Výběr technologie pro vykreslování grafů je jednou z nejvýznamnějších voleb
při vývoji této aplikace. Má dopad na výkon, paměťovou náročnost a obtížnost
vývoje. Každá technologie se totiž chová jinak než ostatní a ovlivní tak značnou
část kódu. Vzhledem k tomu, že se jedná o interaktivní grafy, tak je možné z vý-
běru rovnou vyřadit technologii statických grafů. Tím zbývají Canvas, Pluginy
a SVG. Aby se zajistila co největší kompatibilita a jednoduchost používání,
tak není vhodné využívat pluginy třetích stran a na výběr tedy zbývají pouze
Canvas a SVG, které jsou součástí HTML5 standardu. Obě technologie mají
svá výrazná pro i proti, a je tedy nutné zvážit, která z nich se nejlépe hodí pro
tuto bakalářskou práci.

Nejprve se podíváme na SVG. Grafy se obvykle skládají ze základních ge-
ometrických tvarů, pro jejichž vykreslování je tato technologie stvořena. Zá-
roveň se SVG objekty snáze ovládají a může se s nimi pracovat i po jejich
vykreslení a HTML obsahuje prostředky pro interakci s nimi. Z těchto důvodů
využívá valná většina existujících řešení právě tuto grafiku. Ačkoliv by se na
první pohled mohlo zdát, že vektorová grafika je v tomto porovnání jasný vítěz,
není tomu tak. Problémem je ohromné množství potřebných objektů při vět-
ším množství zobrazovaných dat. To vede k větším nárokům na výkon zařízení
a k pomalému vykreslování grafů.

Jak je na tom tedy canvas? Namísto vykreslování jednotlivých objektů, jako
je tomu u SVG, se používá kreslící plocha, na kterou jsou vykreslovány obrazy,
tvary a text. To umožňuje efektivnější vykreslování grafů s velkým množstvím
dat, protože se vykreslují pouze pixely na plátně, nikoli jednotlivé objekty.
Tento přístup může vést k lepšímu výkonu a rychlejšímu vykreslování, zejména
při práci s velkým objemem dat.

3.2 Frontend

Frontend webové aplikace je zodpovědný za uživatelské rozhraní a interakci
s uživateli. Jeho účelem je prezentace obsahu a komunikace s backendem. Díky
frontendu mohou uživatelé snadno navigovat, provádět akce a využívat funkce
aplikace.

25

3. Volba technologií

3.2.1 HTML
HTML (HyperText Markup Language) je základním stavebním kamenem webo-
vých aplikací, který definuje význam a strukturu prezentovaného obsahu. Hy-
pertext je způsob strukturování textu, který využívá takzvaných hyperlinků,
neboli odkazů na další dokument v rámci jedné nebo více webových stránek.
Vzniká tak síť provázaných dokumentů, které jsou základem moderního webu.

HTML využívá specifické značky, známé jako tagy, k označení a organizaci
různých typů obsahu, jako jsou textové odstavce, obrázky, odkazy a další pro
zobrazení ve webovém prohlížeči. Běžnými příklady jsou <p> pro označení
odstavců, <head> pro metadata a mnoho dalších. Běžně se používá v kombi-
naci s CSS11, které určuje vzhled stránky, a s JavaScriptem, který zpracovává
funkcionalitu a dynamické chování. [24]

3.2.2 CSS
CSS (Cascading Style Sheets) je jazyk pro určování vzhledu HTML a XML
dokumentů. Tento jazyk byl vytvořen jako reakce na potřebu oddělení obsahu
a designu, což výrazně usnadňuje údržbu, aktualizaci a rozšíření webových
stránek. Je založen na standardu společnosti W3C12.

Při použití samotného HTML budou stránky používat stejný font, velikost
písma, barvu elementů, odsazení a další vizuální vlastnosti. Pomocí CSS lze
tyto vlastnosti nastavit a určit tím tak vzhled webové stránky. CSS je hierar-
chický a kaskádový jazyk, což znamená, že styly se dědí od rodičovských prvků
a mohou být přepisovány pomocí specifičtějších selektorů. Díky tomu umožňuje
snadnou aplikaci globálních stylů na celou webovou stránku, zatímco zároveň
poskytuje možnost vytvoření specifických stylů pro individuální prvky. Styly
lze vkládat přímo do HTML dokumentů nebo do externích souborů. Toto od-
dělení vzhledu od obsahu také zlepšuje výkon webových stránek tím, že umož-
ňuje prohlížečům načíst styly paralelně s obsahem, což zkracuje dobu načítání
a zlepšuje uživatelský zážitek. [25]

3.2.3 JavaScript
JavaScript je multiplatformní objektově orientovaný skriptovací jazyk, který
se používá k vytváření interaktivních webových stránek. Může být interpreto-
vaný, nebo JIT13 kompilovaný pro vyšší výkon. Nejznámější je jako skriptovací
jazyk pro webové stránky, ale používá se i v mnoha dalších prostředích mimo
prohlížeč, jako jsou například Node.js, Apache CouchDB a Adobe Acrobat.

Přestože byl původně vytvořen pro frontend, ale lze pomocí něj vytvářet
systémy i na straně serveru. JavaScript se používá pro vytváření různých funkcí
a efektů na webových stránkách, jako jsou animace, validace formulářů, dyna-
mická aktualizace obsahu bez nutnosti obnovení stránky, AJAX14 pro komuni-
kaci s webovými servery a mnoho dalšího. Díky těmto vlastnostem JavaScript
umožňuje vývojářům vytvářet responzivní a interaktivní webové aplikace. [26]

11Cascading Style Sheet
12World Wide Web Consortium
13Just-in-time
14Asynchronous JavaScript and XML

26

3.3. Backend

3.2.4 Shrnutí
Kombinace HTML, CSS a JavaScriptu je zlatým standardem při vývoji webo-
vých aplikací. Ačkoliv existují i další technologie a frameworky, které nabízejí
podobné funkce a možnosti, ale ty stále nejsou podporované na všech zaříze-
ních a internetových prohlížečích. Proto jsou tyto tři technologie zvoleny pro
vývoj této webové aplikace.

3.3 Backend

Backend webové aplikace je část systému, která zpracovává data a logiku na
straně serveru. Zajišťuje správu databáze, zpracování požadavků od uživatelů
a další úkoly. Volba technologií má veliký dopad na výkon, kompatibilitu a šká-
lovatelnost aplikace.

3.3.1 PHP
PHP (Hypertext preprocessor) je populární skriptovací jazyk, který je určený
především k vývoji dynamických webových stránek a aplikací. Vznikl v devade-
sátých letech pro účely osobní domácí stránky (původní jméno Personal Home
Page), od té doby prošel mnohou změn. Dnes se jedná o flexibilní jazyk s širo-
kým spektrem funkcí a možností použití. Lze jej integrovat přímo do HTML,
kde může sloužit k drobnému vytváření obsahu, nebo může být využit jako zá-
klad celé webové aplikace a plnit množství úloh jako je například komunikace
s databází. Podporuje funkcionální programování, OOP15 a další přístupy. Veš-
kerý kód se vyhodnocuje na straně serveru bez předchozího kompilování. Díky
rozsáhlé komunitě a podpoře pro veliké množství platforem zůstává PHP jed-
ním z hlavních nástrojů pro tvorbu webových aplikací. Proto také bývá PHP
často používáno v rámci webhostingů. [27]

Základní funkcionalitu PHP lze rozšířit pomocí frameworků, které usnadní
a urychlí vývoj webových aplikací. Jedním takovým je například Symfony.
Jedná se o open-source framework, který poskytuje širokou škálu nástrojů
a komponent pro zjednodušení běžných úkolů, jako je správa routování, práce
s formuláři, manipulace s databází a řízení uživatelských oprávnění. [28]

Další funkce lze přidat pomocí rozsáhlého ekosystému knihoven. Je vhodný
pro projekty různých velikostí a komplexity, od malých webových stránek až
po rozsáhlé aplikace.

3.3.2 Java
Název Java může popisovat buď programovací jazyk nebo vývojové a runtime
prostředí. Byl vytvořen v roce 1995 firmou Sun Microsystems a od té doby
získal širokou popularitu díky své flexibilitě a přenositelnosti. Java je objektově
orientovaný jazyk, který se odlišuje od tradičních kompilovaných jazyků tím,
že nevytváří strojový kód přímo, ale generuje tzv. bytecode, který je následně
spouštěn na JVM16. Díky tomu je program velmi dobře přenositelný a lze jej
spouštět na mnoha rozdílných platformách a systémech. Java poskytuje mnoho

15Objektově Orientované Programování
16Java Virtual Machine

27

3. Volba technologií

technologií pro webové aplikace. Příkladem je JSP17 pro dynamické vytváření
obsahu. [29][30]

Kromě toho existují různé populární frameworky a nástroje, jako je napří-
klad Spring Framework, který poskytuje komplexní sadu nástrojů pro tvorbu
webových aplikací, komunikaci s databází a mnoho dalších funkcí. Spring open-
source projekt, který má rozsáhlou a aktivní komunitu, což zaručuje jeho ne-
ustálý vývoj a podporu. Podporuje mnoho způsobů využití od drobných clou-
dových aplikací až po systémy velikých firem. [31]

3.3.3 Node.js
Node.js je open-source, cross-platformovní, JavaScriptové runtime prostředí,
které umožňuje vývojářům psát backend webových aplikací v JavaScriptu.
Umožňuje spouštění kódu mimo webový prohlížeč a umožňuje asynchronní
a událostmi řízené programování. Když Node.js provádí operaci, jako je na-
čítání dat ze sítě, či přístup k databázi nebo souborovému systému, tak proces
zahájí až když obdrží odpověď, místo toho aby aktivně čekal a plýtval cykly
CPU. To zajišťuje efektivní zpracování více požadavků současně. Hlavní výho-
dou však je, že se vývojáři nemusí učit více jazyků a mohou vytvářet jak fron-
tend tak i backend pouze pomocí JavaScriptu. Node.js je také optimalizován
pro práci s nejrůznějšími databázemi, souborovými systémy a sítěmi. Nabízí
bohatou sadu modulů a nástrojů, které usnadňují integraci a vývoj aplikací
v různých oblastech, včetně IoT, real-time komunikace a cloudových služeb.
[32]

Vývojáři mohou využít rozsáhlou knihovnu Node.js, zvanou npm (Node
Package Manager), která obsahuje tisíce balíčků a modulů připravených k po-
užití. To značně urychluje vývoj a umožňuje vývojářům vytvářet komplexní
aplikace s minimálním úsilím. [33]

3.3.4 Shrnutí
Pro vývoj této webové aplikace bude využito PHP v kombinaci s framewor-
kem Symfony. Jedná o nejvíce používaný jazyk pro backend webových aplikací
a má díky tomu nejvíce pomocných materiálů a návodů. Java a Node.js také
mají své silné stránky, které však nenajdou využití vzhledem k menšímu roz-
sahu webové aplikace. PHP má navíc nespornou výhodu, že je kompatibilní
s většinou webhostingů, a velmi tak usnadní finální nasazení aplikace.

3.4 Databázové technologie

Databáze slouží k ukládání, načítání a správě dat. Tyto technologie umožňují
webovým aplikacím uchovávat uživatelské údaje, obsah stránek, nastavení, his-
torii transakcí a mnoho dalšího. Jsou základem mnoha webových aplikací, je-
jichž účelem je především prezentace dat uživateli.

3.4.1 MySQL
MySQLje jedním z nejpopulárnějších a nejvíce používaných relačních databá-
zových systémů na světě. Vývoj, distribuci a podporu zajišťuje Oracle Corpo-

17JavaServer Pages

28

3.4. Databázové technologie

ration. Hlavním principem MySQL je ukládání dat do strukturovaných tabulek,
které lze mezi sebou propojit pomocí primárních a cizích klíčů, což umožňuje
efektivní a organizovanou správu dat. Pro vytváření dotazů a ovládání databáze
využívá jazyk SQL18.

Jedním z klíčových aspektů MySQL je jeho zaměření na bezpečnost a in-
tegritu dat. Databázový systém MySQL implementuje pokročilé zabezpečení
a kontrolní mechanismy, které zajišťují, že data jsou chráněna a zachována
v neporušeném stavu během provádění transakcí a operací. Dále MySQL nabízí
vysokou škálovatelnost a flexibilitu, což umožňuje efektivní správu dat a zpra-
cování vysokého provozu. Tento systém je vhodný pro širokou škálu aplikací,
od malých a středních webových stránek, e-shopů až po komplexní podnikové
systémy a databázové řešení s vysokým objemem dat. [34]

3.4.2 PostgreSQL
PostgreSQL je open-source relační databázový systém, který se vyznačuje svou ro-
bustností a flexibilitou. Je navržen tak, aby podporoval širokou škálu datových
typů, od běžných relačních dat až po moderní formáty jako JSON19, XML
a geometrická data. Tento databázový systém nabízí pokročilé funkce včetně
pohledů, triggerů, procedur a indexů, které umožňují efektivní správu a ma-
nipulaci s daty. Důležitou vlastností PostgreSQL je jeho schopnost provádět
operace nad daty v rámci transakcí s atomickým, konzistentním, izolovaným
a trvalým chováním (ACID20), což zajišťuje spolehlivost a integritu dat. Navíc
podpora pro externí rozšíření rozšiřuje možnosti systému a umožňuje integrovat
další funkcionality a nástroje.

Díky těmto vlastnostem se PostgreSQL stává oblíbenou volbou pro vývojáře
a organizace různých velikostí. Jeho všestrannost umožňuje využití v menších
webových aplikacích, ale také v komplexních analytických systémech a rozsáh-
lých enterprise aplikacích, kde je potřeba spolehlivého a výkonného řešení pro
správu a ukládání dat. [35]

3.4.3 MongoDB
MongoDB je moderní dokumentově orientovaný NoSQL databázový systém,
který je navržen pro snadné ukládání a manipulaci s velkými objemy nestruk-
turovaných dat. Databáze MongoDB využívá schématu ukládání dat ve formě
dokumentů v JSON formátu, což je nativní pro mnoho programovacích jazyků,
včetně JavaScriptu, což usnadňuje integraci a manipulaci s daty. Díky tomuto
přístupu zvládá ukládat různé typy nestrukturovaných dat, což zahrnuje tex-
tové dokumenty, obrázky, videa a další multimediální obsah. Dále MongoDB
nabízí robustní možnosti horizontálního škálování a replikace, což umožňuje
distribuované ukládání dat a efektivní správu vysokého provozu.

Díky těmto funkcím poskytuje MongoDB vysokou dostupnost a odolnost
vůči selháním, což zajišťuje nepřetržitý provoz aplikací i v případě výpadků
komponent. V kombinaci s těmito vlastnostmi MongoDB poskytuje flexibilní
a škálovatelné řešení pro různé aplikace, od webových služeb, mobilních aplikací

18Structured Query Language
19JavaScript Object Notation
20Atomicity, Consistency, Isolation, Durability

29

3. Volba technologií

až po velké podnikové systémy, kde je potřeba rychlého, spolehlivého a odolného
databázového řešení. [36]

3.4.4 Shrnutí
Hlavním účelem je zobrazování grafů a databáze bude tedy především data
pouze uchovávat a vypisovat. Nebudou zde probíhat transakce mezi jednot-
livými grafy, a není proto nutné primárně řešit zachování integrity dat, jako
by tomu bylo například u bankovního systému. Data, která budou v databázi
uložena, budou pouze částečně strukturovaná a je nutné počítat s možným
přidáváním dalších nabízených grafů. Dokumentová databáze se tedy jeví jako
ideální řešení pro tento typ aplikace, protože umožňují rychlé a jednoduché
ukládání a získávání dat v podobě dokumentů, které odpovídají struktuře po-
užívaných grafů. Nejlepší volbou pro účely této aplikace je tedy MongoDB.

30

Kapitola 4
Návrh

Tato kapitola se věnuje návrhu jednotlivých částí aplikace na základě dříve pro-
vedené analýzy. Hlavním cílem projektu je poskytnout nástroj pro vykreslování
grafů, který lze jednoduše integrovat do webových stránek. Pro tyto účely je
vhodné využít modulární architekturu aplikace. Modularita umožňuje oddělení
části aplikace zodpovědné za vykreslování grafů od ostatních funkcionalit, jako
je například backend nebo databáze. Tímto způsobem můžeme snadno rozši-
řovat, upravovat a spravovat každou část aplikace nezávisle na ostatních. Díky
modularitě je také možné implementovat nové funkce nebo změnit již existu-
jící bez výrazných dopadů na ostatní části systému. Takový přístup umožňuje
vysoce flexibilní a udržitelný vývoj aplikace, která může snadno reagovat na
budoucí požadavky a změny v prostředí.

4.1 Vykreslování grafů

Účelem této části je načítání dat, jejich vykreslování ve formě grafů a zajištění
interaktivity pro uživatele. Pro rychlejší vykreslování se doporučuje jej rozdělit
na více částí a vrstev. Protože canvas nenabízí možnost vrstev, jako je tomu
například u grafických programů jako GIMP21, tak je nutné využít více canvas
elementů nad sebou. V případě této aplikace se jedná o základní vrstvu, na
které se nachází všechny potřebné informace, vrstvu zajišťující interaktivitu
a vrstvu s animacemi a efekty. [37]

4.1.1 Základní vrstva

Základní vrstva je hlavní vrstvou grafu. Zahrnuje kompletní vykreslený graf
ve zvolených barvách včetně titulku, os, popisků, pomocných čar a dalších
vizuálních prvků potřebných k prezentaci dat.

Tato vrstva tvoří statický základ grafu, jelikož její vykreslování je nejnároč-
nější částí procesu. Na základní vrstvě jsou vidět všechny interaktivní prvky,
avšak interaktivita samotná probíhá jinde. Vrstva se však musí dynamicky mě-
nit při použití funkcionality, jako je zoom nebo posunutí.

21GNU Image Manipulation Program

31

4. Návrh

Obrázek 4.1: Znázornění vrstev grafu

4.1.2 Detekční vrstva

Účelem této vrstvy je zajištění interaktivity. canvas neobsahuje žádné objekty,
které by bylo možné manipulovat a reagovat na vyvolané události, jako je napří-
klad kliknutí myší. Vstup od uživatele je tedy nutné zpracovat jiným způsobem.
Existuje několik možností jak toho docílit.

První možností je, že celý canvas reaguje na akce uživatele. Vykreslené ob-
jekty mohou být uloženy i se všemi svými parametry, jako je pozice, tvar,
velikost a podobně. Při kliknutí nebo jiné události lze načíst momentální po-
zici myši a převést jí na souřadnice na canvasu. Poté se pozice myši porovná
se všemi uloženými objekty. Pro obdélník to znamená, že pokud se souřad-
nice myši nachází mezi levým horním a pravým dolním rohem, tak se na-
chází uvnitř obdélníku. Pro kruh by se porovnávala vzdálenost kurzoru myši
od středu kruhu, aby se nacházela uvnitř, pak musí tato vzdálenost být menší
než poloměr daného kruhu. Takto lze zkontrolovat všechny vykreslené tvary,
ale u mnohoúhelníků a podobných je tento proces značně složitější, viz 4.2.

Tento přístup má své výhody, jako je jednoduchost implementace, mož-
nost překrývajících se tvarů a rychlost načtení grafu. Pro malé množství dat
je ideální, ale z přibývajícími hodnotami začne být patrná hlavní nevýhoda.
Vzhledem k tomu, že je nutné porovnat polohu kurzoru se všemi vykreslenými
tvary, tak výpočetní náročnost stoupá lineárně. na slabších zařízeních je ci-
telné zpoždění mezi uživatelskou akcí a reakcí grafu. Lze samozřejmě provádět
optimalizace, jako je rozdělení plochy na zóny, které umožní porovnávání ome-
zit jen na část objektů. Tím se však značně zesložiťuje implementace a jádro
problému to stejně nevyřeší.

Druhou možností je využití image mapy, která byla zmíněna předcháze-
jící kapitole. Umožňuje na obrázku vymezit zóny, pomocí nichž lze následně
díky JavaScriptu získávat vstup od uživatele. Tato metoda však sdílí nevýhody
s SVG, jako je veliký počet objektů v DOM a pomalé načítání, takže se nehodí
pro účely této aplikace, která má za cíl minimalizovat nároky na výkon.

Bylo by ideální, kdyby existoval způsob, jak přesně detekovat, s čím chce
uživatel interagovat, který by měl rychlou odezvu a nevyžadoval by příliš pro-
středků zařízení. Zde přichází na řadu detekční vrstva. canvas API umí předat

32

4.1. Vykreslování grafů

Obrázek 4.2: Detekce bodu uvnitř polygonu [8]

informace o konkrétních pixelech, takže je možné zjistit, co přesně se pod kur-
zorem myši nachází.

Pro každý prvek na základní vrstvě, který má být interaktivní se na de-
tekční vrstvu vykreslí jeho kopie. Každý má svou unikátní barvou, jejíž hodnota
odpovídá indexu daného prvku. Každý barevný kanál poskytuje 256 hodnot,
maximální počet unikátních objektů je tedy 16 777 216. Může se to zdát jako
omezení, ale je to více než dostatečné, protože běžné monitory ani nemají tolik
jednotlivých pixelů.

4.1.3 Animační vrstva

Tato vrstva slouží k dynamickému vykreslování specifických prvků grafu v re-
akci na akce uživatele. Když uživatel provede interakci, jako je kliknutí na pr-
vek grafu či přejetí myší, tak animační vrstva reaguje tím, že vykreslí vybrané
prvky s využitím animačních efektů. Tyto efekty mohou zahrnovat zvýraznění,
plynulé zvětšení nebo zmenšení prvků, barevné změny či jiné vizuální úpravy.

Důvodem samostatné vrstvy je, že vykreslování jednotlivých prvků je vý-
početně náročné, a je proto vhodné aby se jich vykreslovalo co nejméně. Toho
je docíleno oddělením animací a efektů od zbytku grafu. Při každé interakci
tedy stačí vykreslit pouze několik málo objektů, jak lze vidět na obrázku 4.1,
a velmi se tím zrychlí odezva grafu, což vede k příjemnějšímu uživatelskému
zážitku.

33

4. Návrh

4.2 Aplikace na vytváření grafů

4.2.1 Stránka pro úpravu grafu
Hlavní částí GUI22 aplikace je stránka pro úpravu grafů a dat. Na obrázku
4.3 je jednoduchý wireframe diagram, který ilustruje, jak by tato stránka měla
vypadat. Dolní část okna je vyhrazena pro tabulkový editor, kde uživatelé mo-
hou vkládat a upravovat data, která budou použita pro vytvoření grafu. Tento
editor umožňuje uživatelům zadávat hodnoty a upravovat je v reálném čase,
přidávat či odebírat sloupce a řádky nebo nastavovat jméno datové kategorie,
což značně usnadní proces tvorby grafu. Bez tabulkového editoru by bylo nutné
data připravovat externě a poté je v již finální podobě importovat.

V levém horním rohu se nad tabulkou nachází panel s nastaveními. Je určen
pro správu všech vizuálních vlastností grafu, od barvy pozadí a titulku až po
kontrolu zoomování a dalších interaktivních funkcí.

Třetím důležitým prvkem je okno s vykresleným grafem, které slouží k vizu-
ální kontrole vzhledu grafu. Uživatelé zde mohou vidět náhled grafu na základě
dat z tabulky a nastavení z panelu, což jim umožňuje okamžitě vidět výsledek
své práce a případně provádět další úpravy.

Obrázek 4.3: Rozložení stránky pro vytváření grafů

4.2.2 Uživatelské účty
Pro zajištění osobního přístupu a možnosti uchovávání dat je aplikace vyba-
vena systémem uživatelských účtů. Uživatelé mají možnost vytvořit si svůj
vlastní účet, který jim umožňuje ukládat svá data a nastavení. Díky uživatel-
ským účtům mají uživatelé možnost přistupovat ke svým datům z libovolného
zařízení s připojením k internetu a pracovat s nimi kdykoliv a odkudkoliv.

22Graphical User Interface

34

4.3. API

Uživatelské účty zajišťují také bezpečnost dat a soukromí uživatelů prostřed-
nictvím autorizovaného přístupu a ochrany heslem.

4.3 API

API (Application Programming Interface) je nástrojem pro interakci mezi soft-
warovými aplikacemi a službami, poskytujícím sadu funkcí, procedur a proto-
kolů, které umožňují programátorům přistupovat k funkcím a datům jiných
systémů. Slouží k tomu, aby umožnil komunikaci a výměnu dat mezi různými
systémy, a poskytuje tak programátorům možnost využít již existujících řešení
a integrovat je do svých vlastních aplikací. API tak zjednodušuje vývoj nových
aplikací a umožňuje rychlou a efektivní integraci nových funkcí a datových
zdrojů.[38]

V rámci tohoto řešení je API využito pro nahrávání dat na server a jejich
načítání, což umožňuje dynamické aktualizace a vytváření grafů s nejnovějšími
informacemi. Například je možné vytvořit webovou stránku, která zobrazuje
teplotu za posledních 24 hodin a pomocí API automaticky načítá aktuální
data.

Obsahuje endpointy pro registraci a přihlášení uživatelů a pro vytváření
grafů, aktualizaci dat a načítání potřebných informací. Jedná se proto o REST
API.

4.4 Databáze

Tato aplikace se soustředí na vykreslování a tvorbu grafů, stačí tedy ukládat
pouze data grafů a uživatelské profily. Díky tomu může být celý databázový
model velmi jednoduchý.

4.4.1 Doménový model

Obrázek 4.4: Doménový model

4.4.1.1 Uživatel

Entita Uživatel představuje základního aktéra v systému, který je schopen
vytvářet a manipulovat s grafy. Každý uživatel má unikátní identifikátor, e-
mailovou adresu a heslo, které slouží k autentizaci a zabezpečení jeho účtu.

35

4. Návrh

• id: Jednoznačný identifikátor uživatele v systému, používaný pro identi-
fikaci a provázání s dalšími daty v databázi.

• email: E-mailová adresa uživatele, která slouží jako unikátní identifikátor
pro přihlášení a komunikaci s uživatelem.

• heslo: Heslo uživatele, které je hashováno a ukládáno v databázi, aby
byla zajištěna bezpečnost účtu. Při přihlašování je heslo porovnáváno
s uloženým hashem pro ověření identity.

4.4.1.2 Graf

Entita Graf reprezentuje vizuální prezentaci dat v systému, která může být
vytvořena a upravována uživateli. Graf obsahuje informace o svém identifi-
kátoru, názvu, metadatech a tabulce, která obsahuje data potřebná pro jeho
vizualizaci.

• id: Unikátní identifikátor grafu, který slouží k jeho jednoznačné identi-
fikaci v systému a je používán například v URL pro odkaz na konkrétní
graf.

• jméno: Název grafu, který slouží k identifikaci a popisu jeho obsahu.
Jméno by mělo být výstižné a informativní, aby uživatel okamžitě rozu-
měl obsahu grafu.

• metadata: Informace o grafu jako nadpisy, odsazení, typ grafu, barva
pozadí, font legendy a další vizuální vlastnosti.

– nadpisy: Slouží k označení jednotlivých částí grafu, například osy x
a y nebo nadpis grafu.

– odsazení : Určuje prostor mezi okrajem grafu a jeho obsahem.
– typ grafu: Definuje, jakým způsobem jsou data vizualizována, napří-

klad spojnicový, sloupcový, koláčový nebo bodový graf.
– barva pozadí : Specifikuje barvu pozadí grafu.
– font legendy: Určuje vzhled textu v legendě grafu, například velikost

a styl písma.
– popisky os: Obsahuje textové popisky pro osy grafu, které pomáhají

interpretovat zobrazená data.
– zobrazení pomocných čar: Nabízí možnost zapnout nebo vypnout

pomocné čáry na osách grafu, což usnadňuje čtení a interpretaci
dat.

– velikost a ohraničení bodů: Nastavuje velikost a styl bodů v bodovém
grafu, což ovlivňuje jejich viditelnost a rozlišitelnost v grafu.

– styl čar: Definuje styl čar použitých pro vykreslení grafu, například
tloušťku a typ čáry.

– další specifické vlastnosti: Další metadata a nastavení, která mohou
být relevantní pro konkrétní typy grafů a potřeby uživatele.

• tabulka: Obsahuje pole sloupců, které reprezentují jednotlivé kategorie
záznamů.

36

4.4. Databáze

– názvy sloupců: Identifikují jednotlivé kategorie dat, které jsou zob-
razovány v grafu.

– barvy: Určují barevné kódy, které jsou přiřazeny jednotlivým kate-
goriím dat pro vizualizaci.

– data: Obsahují samotná číselná data, která jsou zobrazena v grafu.

4.4.2 Rozšíření
I když současná funkcionalita aplikace nevyžaduje složitý databázový model,
je vhodné připravit databázi i na budoucí rozšíření. To znamená, že je možné
přidat další kolekce dat a vazby pro nové funkce nebo možnosti aplikace. Jeden
příklad by mohl zahrnovat možnost sdílení grafů mezi uživateli, což by vyža-
dovalo novou tabulku pro sdílení a vazby mezi uživateli a grafy. Při použití
relační databáze by bylo nutné upravovat tabulky a pečlivě plánovat budoucí
změny. Díky tomu, že byla zvolena databáze MongoDB, která je určena pro
ukládání částečně strukturovaných dat, tyto komplikace odpadají.

Je to také důvodem, proč byla pro nastavení grafu vytvořena položka me-
tadata. Ne každý graf potřebuje všechna nastavení, kde příkladem může být
koláčový graf, který nepotřebuje znát popisky os. Stávající i nová nastavení
lze tedy ukládat pod atribut metadata a v případě přidávání nových funkcí je
dynamicky měnit.

37

Kapitola 5
Realizace

5.1 Struktura projektu

Projekt využívá výchozí adresářovou službu frameworku Symfony s několika
drobnými změnami. Příkladem je změna složky Entity na složku Document,
protože je použita dokumentová databáze narozdíl od výchozí relační databáze.

charts/
bin/...binární soubory Symfony
config/...........................konfigurační soubory balíčků a cest
public/

index.php.................................vstupní soubor aplikace
scripts.....................................JavaScriptové soubory

charts.........................knihovna pro vykreslování grafů
src/

Api/
Controller/
Form/
Repository/

DefaultController.php......................výchozí controller
Document/....................MongoDB ekvivalent adresáře Entity

User.php..entita uživatele
Chart.php..entita grafu

templates/
base.html.twig..................................základní šablona
default/

index.html.twig úvodní stránka
tests/
var/
vendor...balíčky závislostí
composer.json......................................definice závislostí
symfony.lock..................................zamknutí verzí balíčků

Obrázek 5.1: Adresářová struktura projektu

39

5. Realizace

5.2 Vykreslování

Vykreslování grafu je rozděleno na několik hlavních částí a vrstev. První z nich
je základní vrstva, která obsahuje osy, popisky data a další. Druhá vrstva se
využívá k detekci interakcí a finální vrstva obsahuje efekty.

5.2.1 Základní tvary
Každý interaktivní element se nachází v první i druhé vrstvě a v případě inter-
akce s ním se zobrazí i ve vrstvě třetí. Souřadnice a základní tvar bez ohraničení
a stínů jsou pro každý prvek ve všech třech vrstvách totožné. V JavaScriptu je
tedy uloženo pole všech interaktivních objektů, které reprezentují geometrické
tvary v grafu. Zjednodušený diagram tříd je k vidění na obrázku 5.2.

Obrázek 5.2: Základní grafové tvary

• Tvar: Tvar představuje základní abstraktní entitu, která není přímo vy-
kreslována, ale slouží jako počáteční bod pro další tvary v grafu. Jeho role
spočívá v poskytování základních informací a parametrů, které budou dě-
děny ostatními tvary. Obsahuje základní informace jako pozici a rozměry.

• Obdélník: Tvar obdélníku je odvozen z abstraktního tvaru. Jedná se
o základní prvek, který představuje čtvercovou či obdélníkovou plochu

40

5.2. Vykreslování

v grafu. Zahrnuje pozici, rozměry (šířku a výšku) a další charakteristiky
tvaru.

• Kruh: Tvar kruhu vychází také z abstraktního tvaru. Je to základní prvek
pro vykreslování kruhových grafů nebo bodů v grafu. Obsahuje informace
o pozici středu, poloměru a další parametry definující jeho vzhled.

• Koláčová výseč: Tvar koláčové výseče je odvozen z tvaru kruhu. Repre-
zentuje část kruhového grafu, která je definována určitým úhlem. Zahr-
nuje pozici středu, poloměr, úhel a další parametry specifické pro koláčo-
vou výseč.

• Donutová výseč: Donutová výseč je odvozením z koláčové výseče. Jedná
se o vylepšenou verzi koláčové výseče, která obsahuje informace o vnitř-
ním a vnějším poloměru, což jí dává prstencovitý tvar. Kromě běžných
parametrů koláčové výseče obsahuje také informace o vnitřním a vnějším
poloměru, které definují tloušťku prstence.

5.2.2 Základní třída grafu
Jedná se o základ, ze kterého všechny grafy vycházejí, a který obsahuje všechny
společné funkce a atributy. Je zobrazena na diagramu 5.3. Ostatní grafy jsou
v základu totožné a stačí proto uvést pouze tuto třídu.

5.2.2.1 Atributy:

• data: Array<Object>: Tento atribut představuje pole objektů, které
obsahují data určená k zobrazení na grafu. Každý objekt v poli předsta-
vuje jednu sadu dat pro vykreslení.

• settings: Object: Atribut settings je objekt, který obsahuje různá na-
stavení pro graf, jako například barvu, styl čar nebo popisky os.

• canvas: HTMLCanvasElement: Tento atribut je odkaz na HTML ele-
ment canvas, na kterém se bude kreslit graf. Canvas poskytuje prostředky
pro vykreslování grafických prvků pomocí JavaScriptu.

• zoom: ZoomManager: Instance třídy ZoomManager, která umožňuje
manipulaci se zoomem grafu. Pomocí této instance lze přiblížit nebo od-
dálit zobrazení grafu a provádět posouvání grafem.

• ctx: CanvasRenderingContext2D: 2D kreslící kontext canvasu, který
umožňuje vykreslování grafických prvků na plátno. Tento kontext posky-
tuje metody pro kreslení tvarů, textu a dalších grafických prvků.

• largest: number: Největší hodnota v datech grafu. Tato hodnota před-
stavuje maximální hodnotu v celém datovém setu a je využívána pro
určení měřítka grafu.

• smallest: number: Nejmenší hodnota v datech grafu. Tato hodnota
představuje minimální hodnotu v celém datovém setu a je využívána pro
určení měřítka grafu.

41

5. Realizace

Obrázek 5.3: Diagram třídy základního grafu

• dataLen: number: Délka dat grafu. Tento atribut udává počet datových
bodů, které budou zobrazeny na ose X grafu.

• bounds: Object: Objekt obsahující informace o hranicích grafu. Obsa-
huje informace o levém, pravém, horním a dolním okraji grafu a o pozici
os.

• zoomBounds: Object: Objekt obsahující hranice grafu po aplikaci zo-
omu. Tento objekt poskytuje informace o hranicích grafu po přiblížení
nebo oddálení zobrazení.

• scale: number: Měřítko grafu. Tento atribut určuje měřítko grafu na
základě velikosti canvasu a rozsahu dat.

42

5.2. Vykreslování

• extreme: number: Extrém grafu. Tento atribut určuje maximální ab-
solutní hodnotu v celém datovém setu a je využíván při kreslení os.

• objects: Array: Pole objektů představujících tvary grafu. Tyto objekty
představují jednotlivé prvky grafu, jako jsou body, čáry nebo oblasti.

5.2.2.2 Funkce:

• updateBounds(): Aktualizuje hranice grafu na základě velikosti can-
vasu a nastavení odsazení. Tato metoda zajišťuje, aby graf správně vy-
kreslil všechny prvky v rámci stanovených hranic.

• getBounds(canvas: HTMLCanvasElement, graphMargin: num-
ber): Object: Vypočítá hranice grafu na základě velikosti canvasu a okra-
jových hodnot. Tato metoda určuje rozsah hranic grafu na základě veli-
kosti plátna a okrajových hodnot.

• getZoomBounds(): Object: Vrátí hranice grafu po aplikaci zoomu.
Tato metoda získá hranice grafu po aplikaci zoomu na základě aktuálních
hodnot přiblížení.

• isInBounds(pos: Object): boolean: Zjistí, zda je zadaná pozice uvnitř
hranic grafu. Tato metoda určuje, zda je zadaná pozice uvnitř hranic
grafu, což je užitečné pro detekci interakcí s grafem a zvyšuje rychlost
vykreslování, protože se neplýtvá časem na zobrazení prvků, které není
možné vidět.

• drawTitle(): Tato metoda vykresluje titulek grafu na dané pozici na
plátně na základě zadaných hodnot o obsahu, fontu či velikosti písma.

• updateLegend(displayLegend: boolean, legend: HTMLElement,
chartLoader: any): Aktualizuje legendu na základě zadaných parame-
trů. Legenda obsahuje odkaz na každou kategorii dat.

• resizeCanvas(): Tato metoda upraví velikost plátna na základě velikosti
jeho kontejneru.

• clear(): Vyčistí canvas a odstraní všechny uložené objekty.

• drawDetectionMap(ctx: CanvasRenderingContext2D): Metoda vy-
kreslí detekční mapu na daný 2D kontext, který se nachází na druhém ca-
nvasu. Využívá objektů a tvarů, které byly vyklesleny na základní vrstvě.

• drawEffect(ctx: CanvasRenderingContext2D, objects: Array):
Vykreslí efekty pro zadané tvary na daný 2D kontext.

• drawAxis(displayAxisValues: boolean): Tato metoda vykresluje osy
grafu na plátno a zároveň zobrazuje popisky os.

• setClipRegion(x: number, y: number, w: number, h: number):
Tato metoda nastaví ořezovou oblast pro daný kontext canvasu na základě
zadaných parametrů. Tím se zabrání, aby vykreslovaná data zasahovala
mimo určenou plochu.

• drawYAxisTicks(): Vykreslí značky a popisky na Y-ové ose.

43

5. Realizace

• drawXAxisTicks(displayAxisValues: boolean): Tato metoda vykreslí
značky a popisky na X-ové ose grafu. Není využita pro sloupcové grafy,
které popisky řeší jiným způsobem.

• drawAxisLines(): Tato metoda vykresluje čáry pro osy X a Y na plátno.

• drawAxisLabels(): Vykreslí popisky os grafu.

5.2.3 Zoom
Vzhledem k rastrové povaze canvasu není možné graf přiblížit bez ztráty kva-
lity. Je proto nutné graf vždy po provedení zoomu překreslit. Zoom je im-
plementován pomocí dvou oddělených systémů souřadnic. Jeden reprezentuje
virtuální hranice grafu, které se během přibližování mohou nacházet i mimo
canvas, zatímco druhý je využit přímo pro vykreslování na plátno. Graf lze
přibližovat po horizontální i vertikální ose, přičemž tyto dvě jsou na sobě ne-
závislé.

5.2.4 Provedené optimalizace
Pro uživatele není příjemné, když aplikace provádí operace na pozadí a ne-
podává žádný vizuální obsah. Není z jejich pohledu možné určit, zda služba
funguje správně, nebo zda došlo k chybě. Čím dříve se uživateli dostane vi-
zuální zpětné vazby, tím lépe. Čas do prvního vykreslení je jednou z hlavních
metrik při posuzování přívětivosti webových stránek. [39]

Jedná se o hlavní problém existujících řešení, které se na slabších zařízeních
běžně vykreslují i několik vteřin. Toto řešení proto obsahuje mnoho různých
optimalizací, které mají za cíl grafy vykreslit co nejrychleji.

5.2.4.1 Asynchronní procesy

Během vývoje bylo implementováno asynchronní zpracování určitých operací,
které nevyžadují okamžitou odpověď a mohou být vykonány v pozadí. To umož-
nilo efektivnější využití výpočetních prostředků a zlepšilo výkon aplikace. Kon-
krétně se jedná o načítání data pomocí AJAXu a jejich následné zpracování
a vykreslení.

5.3 Backend

5.3.1 Dodatečné balíčky
Pro usnadnění práce v Symfony jsou použity dodatečné rozšiřující balíčky.

5.3.1.1 Doctrine MongoDB Bundle

Doctrine dokáže v základu pracovat s relačními SQL databázemi. MongoDB
je však dokumentová databáze, a tak vyžaduje dodatečný balíček, který zpra-
covává komunikaci mezi ní a Symfony. S tímto balíčkem se pracuje podobně
jako standardní pro Doctrine, jen se místo Entity využívá Document a má pár
rozdílných funkcí. [40]

44

5.4. Nasazení

5.3.1.2 FOS REST Bundle

Symfony FOSRestBundle je rozšíření pro Symfony framework, které usnad-
ňuje vytváření RESTful API v Symfony aplikacích. Poskytuje sadu nástrojů
a funkcí pro rychlé a efektivní vytváření REST rozhraní včetně automatického
mapování cest, serializace a deserializace dat, podporu pro formáty jako JSON
a XML, řízení přístupu a mnoho dalšího. FOSRestBundle usnadňuje implemen-
taci REST architektury ve Symfony aplikacích a umožňuje vývojářům snadno
vytvářet robustní a dobře strukturovaná API. [41]

5.3.1.3 Twig

Symfony Twig je šablonovací systém používaný v frameworku Symfony pro
tvorbu dynamických uživatelských rozhraní ve webových aplikacích. Jedná se
o moderní a výkonný nástroj, který umožňuje psát šablony ve formátu, který
je čitelný pro člověka a zároveň poskytuje pokročilé funkce pro manipulaci
s daty, podmíněné zobrazení, cykly a další. Twig usnadňuje oddělení logiky od
prezentace a poskytuje strukturovaný a elegantní způsob tvorby uživatelských
rozhraní v Symfony aplikacích. [42]

5.3.2 API
API pro správu grafů poskytuje několik koncových bodů pro získání seznamu
grafů, zobrazení detailů konkrétního grafu, vkládání nových grafů, aktualizaci
stávajících grafů a mazání grafů.

• GET /api/charts: Vrací seznam ID grafů, jež patří přihlášenému uži-
vateli. Odpověď obsahuje seznam ID grafů a HTTP kód 200 OK.

• GET /api/charts/{id}: Endpoint vrací detailní informace o grafu na
základě jeho ID. Odpověď obsahuje detailní informace o grafu a kód 200.

• POST /api/charts/insert: Umožňuje uživateli vytvořit nový graf. Data
grafu se posílají v těle zprávy ve formátu JSON. Backend následně vytvoří
novou entitu a přiřadí jí unikátní ID. Odpověď obsahuje název vytvoře-
ného grafu s HTTP kódem 200. Uživatel musí být přihlášen, jinak se vrátí
chyba přístupu s HTTP kódem 403.

• POST /api/charts/{id}/update: Umožňuje uživateli aktualizovat jeho
grafy. Data se posílají v těle zprávy jako JSON. Obsahem odpovědi je ná-
zev aktualizovaného grafu s HTTP kódem 200. Pokud graf patří jinému
uživateli, vrátí se chyba přístupu s HTTP kódem 403.

• DELETE /api/charts/{id}/remove: Umožňuje smazat existující graf.
Odpověď obsahuje název smazaného grafu s HTTP kódem 200. Uživatel
může mazat pouze své vlastní grafy, jinak se vrátí chyba přístupu s kódem
403.

5.4 Nasazení

Pro nasazení aplikace na server je nezbytné zvolit vhodnou infrastrukturu
a správně nakonfigurovat prostředí pro běh aplikace. V tomto případě je apli-

45

5. Realizace

kace nasazena na virtuálních počítačích, které poskytují potřebné výpočetní
prostředky a flexibilitu pro škálování podle potřeby.

Tyto virtuální počítače běží na clusteru tří fyzických zařízení. Jako hyper-
vizor a správce clusteru je využit Proxmox, který umožňuje centralizovanou
správu virtuálních strojů a kontejnerů a poskytuje prostředky jako jsou mož-
nosti zálohování, migrace a škálování zdrojů.

Aplikace však může běžet i na jednom počítači, kde webserver a databáze
běží přímo v operačním systému nebo v docker kontejnerech.

5.4.1 Webový Server
Pro přijímání a zpracování HTTP požadavků od klientů je použit webový ser-
ver Apache2, který je jedním z nejpopulárnějších webových serverů díky své
spolehlivosti, široké podpoře a flexibilitě. Apache2 je široce využíván ve webo-
vém prostředí díky své schopnosti snadno integrovat další moduly a rozšíření
pro různé potřeby. Jeho konfigurace umožňuje nastavení různých funkcí, jako je
řízení přístupu, logování událostí a podpora dynamického zpracování obsahu.

5.4.2 Databázový Systém
Pro ukládání a správu dat je použit databázový systém MongoDB. Ten běží
na dalším virtuálním počítači odděleném od webového serveru. Tím se zajiš-
ťuje izolace dat a minimalizuje se riziko jejich ztráty nebo poškození. Je možné
vyměnit databázový server nebo zprovoznit další instance, které mohou také
přistupovat k této databázi. Pro zvýšenou bezpečnost dat se ukládají na re-
dundantní pole disků, které je odolné proti selhání až dvou disků najednou.

46

Kapitola 6
Testování

Tématem této kapitoly je otestování vytvořeného řešení, což je klíčový krok při
zajišťování kvality a funkčnosti aplikace. Proces testování lze rozdělit do dvou
hlavních kategorií. První kategorií je technická část, která se zaměřuje na mě-
ření a hodnocení výkonnosti aplikace. To zahrnuje analýzu nároků na výkon,
jako je rychlost načítání, odezva uživatelského rozhraní a efektivita paměťo-
vého využití. Druhou kategorií je testování řešení skutečnými uživateli, což je
nezbytný krok pro zajištění uživatelské spokojenosti a použitelnosti aplikace.

6.1 Testování nároků na výkon

Jedním z hlavních cílů práce bylo vytvořit řešení, které je na rozdíl od dosa-
vadních služeb rychlé a vhodné i pro slabší zařízení. Z tohoto důvodu nestačí
otestovat pouze tuto práci, ale je nutné změřit i ostatní služby, aby bylo možné
porovnat, zda cíle byly skutečně splněny. Pro tento účel byly zvoleny řešení
uvedené v kapitole o analýze 2.1. Byla však vynechána služba LiveGap Charts,
protože v základní verzi generuje pouze statické grafy, což neodpovídá potře-
bám tohoto testování.

6.1.1 Testovací prostředí a metodika
Aby naměřené hodnoty bylo možné vzájemně porovnávat a vyvozovat z nich
závěry, tak musí všechno testování probíhat ve stejném pevně určeném pro-
středí. Zvoleným zařízením je notebook od značky HP s procesorem i5-8265U
a šestnácti gigabajty RAM23. Jedná se o zařízení s průměrným výkonem a díky
tomu by naměřené hodnoty měly odpovídat tomu, s čím se uživatelé setkávají
nejčastěji. Zvoleným webovým prohlížečem je Mozilla Firefox, s nímž je autor
práce zvyklý pracovat. Nejvíce používaným prohlížečem je sice Google Chrome,
ale během základního otestování mezi různými prohlížeči nebyly znatelné roz-
díly při vykreslování grafů, a tak je možné zvolit kterýkoliv z nich.

Každá služba má své vlastní, mírně odlišné použití. Některé se specializují
na vizuální stránku a efekty, zatímco jiné jsou určené pro podrobné datasety.
Na první pohled je také jasné, že například koláčový graf se vykresluje úplně ji-
nak než spojnicový. Pro zachování konzistence v testování byl zvolen sloupcový

23Random Access Memory

47

6. Testování

graf a pro každou službu bylo použito doporučené nastavení, které je uvedeno
v dokumentaci. Každý graf byl implementován na samostatné webové stránce,
aby se minimalizoval vliv dalšího obsahu na výsledky testů. Rozsah dat pro vy-
kreslení byl od jednoho až po sto tisíc záznamů, přičemž hodnoty byly náhodně
generované v rozsahu nula až tisíc.

Pro získání hodnot byly využity funkce JavaScriptu pro měření času a ná-
stroje pro vývojáře, které jsou součástí webového prohlížeče. Ty zahrnují ana-
lýzu síťového provozu, prohlíženi struktury DOM24, kategorizování a změření
obsahu RAM a další. Každé měření bylo provedeno několikrát a nakonec z nich
byla vypočítána průměrná hodnota, aby se snížily výkyvy a zvýšila se přesnost
měření.

6.1.2 Rychlost vykreslování grafů
Tato sekce se zaměřuje na měření rychlosti vykreslování grafů u jednotlivých
služeb. Jedná se o jeden z primárních faktorů, které mají veliký dopad na uži-
vatelský zážitek. [43] Vzhledem k tomu, že každá služba využívá jiný způsob
načítání dat a rychlost internetu nebo úložiště se může lišit, tak bylo měřeno
pouze samotné vykreslování grafu. Naměřené hodnoty tedy neobsahují infor-
mace o načítání dat.

Na obrázku 6.1 je vidět graf naměřených hodnot. Vzhledem k rozsahu testo-
vaných dat byl pro obě osy grafu zvolena logaritmická stupnice, která umožňuje
přehledně zobrazit nízké i velmi vysoké hodnoty. Nižší hodnoty značí v tomto
grafu lepší výsledek.

Obrázek 6.1: Srovnání rychlosti vykreslování grafů pomocí různých služeb

Tato práce se na grafu nachází rovnou dvakrát, protože je její vykreslování
rozděleno na dvě fáze. Nejprve se pouze vykreslí informace na základní vrstvu
grafu, aby je uživatel mohl vidět co nejdříve po vstupu na webovou stránku.
Jedná se však pouze o statický graf. Ve druhé fázi se vykreslí detekční vrstva

24Document Object Model

48

6.1. Testování nároků na výkon

a připraví se interaktivní prvky. Na obrázku je tedy vidět čas do prvního zob-
razení grafu a také čas do plného načtení a zprovoznění všech funkcí.

6.1.2.1 Infogram

Nejhůře je na tom služba Infogram, která je i pro malé množství dat znatelně
pomalejší. Sto hodnot se vykresluje téměř stejně dlouho jako pouze jedna hod-
nota. Je to dáno tím, že během vykreslování grafu stahuje mnoho dodatečných
informací z internetu a způsobuje tím dodatečné zdržení, které není závislé na
vykreslovaných hodnotách. Následně také generuje mnoho HTML elementů,
které slouží k efektům nebo ke sdílení na sociální sítě, některé z nich však
nemají vůbec žádný účel. [4]

Výborně se tím ilustrují problémy moderních služeb, které se soustředí na
marketing a nové funkce, přičemž však zapomínají na optimalizaci a ve vý-
sledku tím zhoršují uživatelský zážitek. [44]

6.1.2.2 Google Charts

Dále přichází na řadu Google Charts. Na obrázku je patrné, že Google Charts
exceluje při práci s menšími datasety, typicky do přibližně sta hodnot. Jeho
rychlost a efektivita jsou v tomto rozsahu velmi solidní. Nicméně, jakmile se
překročí určitá hranice a pracuje se s větším množstvím dat, tak jej začnou
překonávat jiné služby. Je tedy vhodné pro jednoduché vizualizace, ale nehodí
se pro podrobnější a rozsáhlejší grafy. [1]

6.1.2.3 Charts.js

Charts.js je kromě této práce jediným reprezentantem canvasu. Oproti ostat-
ním, které využívají SVG, má tedy zásadní výhodu v rychlosti vykreslování.
Tato vlastnost mu umožňuje efektivně pracovat s velkým objemem dat a zajis-
tit plynulou vizualizaci i při zpracování rozsáhlejších datových sad. Na obrázku
6.1 je patrné, že Charts.js exceluje zejména při práci s většími datasety, kde je
několikrát rychlejší než konkurenční služby, jako je Infogram a Google Charts.

6.1.2.4 Highcharts

Highcharts má podobnou rychlost jako Charts.js, přestože používá pomalejší
technologie. Jedná se o placenou službu, která se zaměřuje na rozsáhlé da-
tasety a je tedy pro tento účel optimalizovaná. Naměřený výsledek odpovídá
očekávaným hodnotám a potvrzuje, že je pro svůj účel vhodnou volbou.[2]

6.1.2.5 Nové řešení

Nakonec se na grafu nachází nové řešení vytvořené v rámci této práce. Je nej-
rychlejší pro všechny rozsahy dat, od pouhých jednotek záznamů až po statisíce.
Jako jediná ze služeb nacházejících se v grafu 6.1 byla tato aplikace otestována
i pro miliony záznamů, které zvládá vykreslit během pouhých několika vteřin.
Ostatní služby nedokázaly takový dataset vůbec vykreslit, protože je limitoval
zvolený hardware. V praxi se samozřejmě nevytváří grafy s takovým množstvím
dat, je to však dobrou ilustrací rychlosti a efektivity tohoto řešení. Zavedení

49

6. Testování

interaktivity trvá přibližně stejný čas jako prvotní vykreslení. I tak je však
výrazně rychlejší než ostatní služby.

Zjištěné výsledky přinesly příjemné překvapení. Bylo možné očekávat, že
toto nové řešení bude pro větší množství dat rychlejší než ostatní služby, pro-
tože se jedná o jeden z hlavních cílů této práce a bylo mu věnované značné
úsilí. U menších dat se nečekalo významné zlepšení, protože se optimalizace
na menších datasetech nestačí projevit. Ukázalo se však, že nové řešení dokáže
významně zrychlit vykreslování i menšího množství dat. U větších datasetů
se rychlost zvyšuje řádově výše, než bylo očekáváno – namísto jednociferného
násobku se rychlost zvýšila dokonce desetkrát až stokrát.

6.1.3 Paměťová náročnost
Tato sekce se zaměřuje na analýzu paměťové náročnosti, která je dalším důle-
žitým faktorem webových aplikací. Často se totiž využívají i na slabších zaří-
zeních, jako jsou starší počítače či mobilní telefony, které mají omezené hard-
warové prostředky.

Naměřené hodnoty jsou k vidění na obrázku 6.3. Byly zde zvoleny stejné
služby jako v předchozí sekci. Jediným rozdílem je, že se tato práce na grafu
nachází pouze jednou. Není totiž potřeba měřit jednotlivé fáze vykreslování,
protože významná je pouze celková paměťová náročnost. Stejně jako tomu bylo
u testování rychlosti, je i zde použita logaritmická stupnice a nižší hodnoty
značí méně vyžadované RAM a výsledek je tedy lepší.

Obrázek 6.2: Analýza použité poměti

Na obrázku lze vidět, že při menším množství dat hrají hlavní roli ve
spotřebě paměti ostatní prvky, jako jsou načtené skripty, základní struktura
webové stránky, CSS soubory a podobně. Při větších datasetech se však začnou
projevovat i samotná data, a to ve formě HTML elementů a ve formě ulože-
ných objektů v rámci JavaScriptu. Pro zjištění konkrétních hodnot byla využita
funkce analýzy paměti, která je součástí nástrojů pro vývojáře ve Firefoxu –
výsledné diagramy vypadají jako obrázek 6.2.

50

6.1. Testování nároků na výkon

Obrázek 6.3: Srovnání spotřeby operační paměti

6.1.3.1 Infogram

Nejhůře ze všech aplikací je na tom opět Infogram, který nehledě na množství
dat načítá mnoho dodatečných prvků. [4] Znamená to, že vyžaduje zbytečně
mnoho paměti i pro malé datasety, což může negativně ovlivnit uživatelský
zážitek a výkon aplikace. Při větším množství dat však není tato chyba tak
znatelná a výsledky se blíží ostatním podobným službám.

6.1.3.2 Google Charts

Google Charts vyžaduje nízké množství paměti pro malé datasety, ale při větším
množství dat jeho spotřeba rychle stoupá. Na grafu je vidět, že okolo pěti
set záznamů dokonce spotřebovává více RAM než Infogram. Toto chování se
podobá tomu, co bylo naměřeno v předchozí sekci. Služba je tedy efektivní
pouze pro menší množství dat.

6.1.3.3 Highcharts

Highcharts má ze všech služeb, které používají technologii SVG, nejnižší nároky
na operační paměť. Využívá méně HTML elementů než obě předchozí služby
a dosahuje tak větší efektivity.

6.1.3.4 Charts.js

Zatím byly zmíněny pouze grafy vykreslované pomocí SVG, které má mnohem
větší nároky na paměť než canvas. Nyní však přichází na řadu služba Charts.js.
Na obrázku 6.3 je možné vidět, že má řádově nižší nároky na operační paměť.
To je způsobeno tím, že canvas má vždy víceméně konstantní velikost, protože
se v podstatě jedná o rastrový obrázek. Vektorová grafika musí naopak ukládat
každý objekt ve své stromové struktuře, a tak se její velikost zvětšuje s rostou-
cím počtem vykreslovaných tvarů a dalších prvků. [22] Jediné co spotřebovává

51

6. Testování

operační paměť jsou tedy objekty v JavaScriptu, které se využívají pro zajištění
interaktivity.

6.1.3.5 Nové řešení

Nakonec se dostává na řadu toto nové řešení. Na grafu je znázorněno, že pro
malé množství dat má srovnatelnou spotřebu paměti jako jiná řešení, dokonce
mírně horší. Důvodem je pravděpodobně to, že jsou pro vykreslení grafu použity
tři canvasy, které zabírají určité množství RAM bez ohledu na množství zob-
razovaných dat. Pro větší datasety je však několikanásobně lepší než všechny
ostatní služby. Bylo potřeba pouhých 14 megabajtů pro to samé, na co Google
Charts spotřebovalo přes dva gigabajty. Společně s Charts.js se jednalo o jediná
řešení, která dokázala zobrazit milion hodnot. Ostatní služby toho nebyly na
zvoleném hardwaru vůbec schopné. Překvapivým zjištěním bylo, že toto řešení
využívá řádově méně RAM než Charts.js, přestože se obě zakládají na stejné
technologii.

6.2 Testování s uživateli

Tato podkapitola se zabývá testováním designu aplikace a uživatelské přívěti-
vosti. Rychlost a nároky na operační paměť totiž nejsou jedinými faktory, které
mají vliv na uživatelský zážitek.

6.2.1 Registrace a přihlášení
Registrace a přihlášení jsou klíčové části uživatelského zážitku, které ovlivňují
celkovou uživatelskou přívětivost aplikace. V této části je testován proces re-
gistrace nového uživatele a přihlášení do aplikace, což jsou první kroky, které
uživatelé musí provést při interakci s aplikací.

1. Chybné údaje:

• Uživatel má za úkol zkusit vyplnit registrační formulář s neplatnými
údaji a otestovat, jak aplikace zpracuje a zobrazí chyby.

2. Vyplnění registračního formuláře:

• Úkolem uživatele je vytvoření nového uživatelského účtu pomocí re-
gistračního formuláře.

3. Úspěšné přihlášení:

• Cílem tohoto úkolu je přihlášení do aplikace pomocí uživatelových
přihlašovacích údajů, které vyplnil v předchozím kroku.

6.2.2 Vytvoření nového grafu
Tato sekce testování se zaměřuje na proces vytváření nových grafů, což je hlav-
ním účelem této aplikace, přičemž je sledována uživatelská schopnost snadno
se orientovat a pracovat s grafickými nástroji. Cílem je zajistit, aby uživatelé
mohli efektivně vytvářet a upravovat grafy podle svých potřeb a požadavků.

52

6.2. Testování s uživateli

6.2.2.1 Vytvoření grafu:

1. Založení nového grafu:

• Účelem tohoto úkolu je zjistit, zda se uživatel dokáže po přihlášení
v aplikaci zorientovat a vytvořit nový graf.

6.2.2.2 Vložení dat:

Cílem této části testování je ověřit, zda je proces vkládání dat snadno prove-
ditelný, přehledný a umožňuje uživateli efektivně pracovat s daty.

1. Import dat ze souboru:

• Uživatel má za úkol naimportovat data do grafu z externího souboru,
jako je CSV.

2. Úprava dat pomocí GUI:

• Uživatel má za úkol změnit některé hodnoty pomocí tabulkového
editoru ve webové aplikaci.

3. Přidání nového sloupce:

• Úkolem uživatele je vložení nového sloupce do tabulky a naplnění
daty včetně nadpisu.

6.2.2.3 Úprava nového grafu:

1. Změna pozadí:

• Uživatel má za úkol změnit typ a styl grafu v průběhu jeho tvorby
podle požadavků.

2. Přidání nadpisu:

• Úkolem uživatele je přidání hlavního nadpisu grafu a nastavení jeho
fontu a velikosti písma.

3. Zapnutí legendy:

• Uživatel má možnost zapnout legendu, která pomáhá identifikovat
jednotlivé kategorie dat v grafu a jejich význam.

4. Změna typu grafu:

• Uživatel má za úkol změnit typ grafu podle svého uvážení. Výchozí
graf je nastaven jako spojnicový, nový typ může tedy být bodový,
sloupcový, koláčový a podobně.

5. Změna barvy sloupce:

• Úkolem uživatele je změna barvy jedné kategorie dat, kterou repre-
zentuje sloupec v tabulce. Toto nastavení má vliv na barvu bodů,
sloupců či legendy.

53

6. Testování

6.2.3 Export dat
Tato část testování se zaměřuje na proces exportu dat z aplikace, což je důležitá
funkcionalita pro uživatele při sdílení dat s ostatními nebo pro uchování dat
na další zpracování.

1. Export dat do formátu CSV:

• Při tomto úkolu se testuje schopnost uživatele exportovat data z apli-
kace do formátu CSV pro další zpracování v externích nástrojích.

2. Export grafu do obrázku:

• Tento úkol ověřuje, zda uživatel dokáže exportovat aktuální graf do
formátu obrázku (např. PNG nebo JPEG) pro sdílení s ostatními.

6.2.3.1 Interakce s grafem:

Tato část testování se zaměřuje na interakci uživatele s grafem a jeho prvky.
Zahrnuje různé funkce, které umožňují uživateli lépe porozumět datům a efek-
tivněji pracovat s grafickými vizualizacemi.

1. Zobrazení detailu:

• Uživatel má za úkol přiblížit se k určité části grafu a zobrazit de-
tailní informace o konkrétních datech nebo hodnotách. Ověřuje se
tak možnost zobrazení tooltipu (bubliny vedle kurzoru) s podrob-
nostmi.

2. Označení kategorie dat pomocí legendy:

• Během tohoto úkolu se uživatel pokusí označit konkrétní kategorie
dat v grafu pomocí legendy a zhodnotit, jak je tato funkce přínosná
pro přehlednost grafu a prezentaci dat.

3. Zoomování na graf:

• Uživatel má za úkol přibližovat a oddalovat graf, aby lépe prozkou-
mal jednotlivé části dat. Testuje se plynulost a snadnost zoomování
a možnost navigace po grafu.

6.2.4 Výsledky
Během testování bylo objeveno několik technických chyb. Příkladem je odsa-
zení grafu, které při vysokých hodnotách blokovalo vykreslování sloupcových
grafů, nebo že se webová aplikace zasekla, když se v tabulce nacházelo příliš
mnoho dat. Dalším příkladem je oříznutí obsahu na menších obrazovkách či ne-
funkčnost některých vlastností při použití dotykové obrazovky. Všechny chyby
odhalené během testování byly vzápětí opraveny.

Grafický design se uživatelům zamlouval a příznivě hodnotili také rychlost
vykreslování grafů a jejich intuitivní ovládání.

54

Závěr

V rámci této bakalářské práce byla vyvinuta přívětivá webová aplikace pro
tvorbu a úpravu interaktivních grafů. Postupováno bylo podle stanovených
cílů, které byly definovány v úvodní kapitole. Hlavním cílem bylo poskytnout
uživatelům prostředí pro snadnou tvorbu a úpravu grafů s využitím moderních
technologií. Mezi dílčí cíle bylo provedeno provedení analýzy existujících řešení,
návrh architektury aplikace, implementace klíčových funkcí a testování celého
systému.

Nejdříve byla provedena analýza existujících nástrojů a služeb pro tvorbu
grafů a technologií vhodných pro tuto aplikaci. Poté byly definovány požadavky
na aplikaci a rozděleny do různých kategorií podle jejich důležitosti a priority.
Na základě těchto požadavků byly zvoleny vhodné technologie a navržena ar-
chitektura a uživatelské rozhraní aplikace.

Během implementační fáze byl kladen důraz na vytvoření klíčových funkcí,
jako je tabulkový editor pro zadávání dat, nastavení vzhledu grafu a vizuali-
zace výsledného grafu. Také byla provedena implementace interaktivních prvků
a optimalizace výkonu aplikace.

Výsledná aplikace obsahuje přehledné uživatelské rozhraní, které umožňuje
snadnou tvorbu a úpravu grafů. Uživatelé mohou využívat širokou škálu funkcí
pro vytváření a personalizaci grafů podle svých potřeb. Během testování rych-
losti vykreslování a paměťové náročnosti dokonce toto řešení předčilo očekávání
ve třech důležitých aspektech. Těmi jsou rychlost vykreslování grafů u malých
dat, řádově vyšší rychlost vykreslování u větších datasetů oproti ostatním služ-
bám a výrazně nižší nároky na operační paměť než u ostatních aplikací. Tes-
tování s uživateli poté pomohlo doladit prostředí aplikace. Všechny stanovené
cíle byly splněny a aplikace je připravena k dalšímu rozvoji a rozšíření o další
funkce a vylepšení.

55

Literatura

[1] Charts | Google for Developers. [online] https://
developers.google.com/chart, September 23 2023, [cit. 01-03-2024].

[2] Highcharts Documentation. [online] https://www.highcharts.com/docs,
2024, [cit. 01-03-2024].

[3] Chart.js. [online] https://www.chartjs.org/, [cit. 01-03-2024].

[4] Create Infographics, Reports and Maps – Infogram. [online] https://
infogram.com/, [cit. 01-03-2024].

[5] Sedki, O.: Online Chart & Graph Maker| LiveGap. [online] https://
charts.livegap.com/, 2024, [cit. 21-03-2024].

[6] Creative, A.: The Differences Between Illustrator and InDesign. [online]
https://www.ashworthcreative.com/blog/2014/07/adobe-indesign-
adobe-illustrator-differ/, Červenec 2014, [cit. 15-04-2024].

[7] Craig, W.: 10 Useful Flash Components for Graphing Data. [on-
line] https://www.webfx.com/blog/web-design/10-useful-flash-
components-for-graphing-data/, Duben 2009, [cit. 15-04-2024].

[8] Finley, D. R.: Determining Whether A Point Is Inside A Complex Poly-
gon. [online] https://alienryderflex.com/polygon/, [2002], [Accessed
24-04-2024].

[9] Kuan, J.: Learning Highcharts. Birmingham, England: Packt Publishing,
Prosinec 2012, ISBN 978-1849519083.

[10] Fhala, B.: HTML5 graphing and data visualization cookbook. Birmingham,
England: Packt Publishing, Listopad 2012, ISBN 9781849693714.

[11] Microsoft: Prezentace dat v bodovém nebo spojnicovém grafu. [online]
https://support.microsoft.com/cs-cz/office/prezentace-dat-v-
bodov%C3%A9m-nebo-spojnicov%C3%A9m-grafu-4570a80f-599a-4d6b-
a155-104a9018b86e, (2024), [Accessed 11-05-2024].

57

https://developers.google.com/chart
https://developers.google.com/chart
https://www.highcharts.com/docs
https://www.chartjs.org/
https://infogram.com/
https://infogram.com/
https://charts.livegap.com/
https://charts.livegap.com/
https://www.ashworthcreative.com/blog/2014/07/adobe-indesign-adobe-illustrator-differ/
https://www.ashworthcreative.com/blog/2014/07/adobe-indesign-adobe-illustrator-differ/
https://www.webfx.com/blog/web-design/10-useful-flash-components-for-graphing-data/
https://www.webfx.com/blog/web-design/10-useful-flash-components-for-graphing-data/
https://alienryderflex.com/polygon/
https://support.microsoft.com/cs-cz/office/prezentace-dat-v-bodov%C3%A9m-nebo-spojnicov%C3%A9m-grafu-4570a80f-599a-4d6b-a155-104a9018b86e
https://support.microsoft.com/cs-cz/office/prezentace-dat-v-bodov%C3%A9m-nebo-spojnicov%C3%A9m-grafu-4570a80f-599a-4d6b-a155-104a9018b86e
https://support.microsoft.com/cs-cz/office/prezentace-dat-v-bodov%C3%A9m-nebo-spojnicov%C3%A9m-grafu-4570a80f-599a-4d6b-a155-104a9018b86e

Literatura

[12] Microsoft: Available chart types in Office. [online] https:
//support.microsoft.com/en-us/office/available-chart-types-
in-office-a6187218-807e-4103-9e0a-27cdb19afb90, (2020), [Acces-
sed 11-05-2024].

[13] Systems, A.: What are raster image files? | Adobe. [online] https:
//www.adobe.com/creativecloud/file-types/image/raster.html, [cit.
19-03-2024].

[14] Systems, A.: Vector files: How to create, edit and open them |
Adobe. [online] https://www.adobe.com/creativecloud/file-types/
image/vector.html, [cit. 19-03-2024].

[15] Kilin, I.: To click or not to click: static vs. interactive charts. [on-
line] https://www.datylon.com/blog/pros-and-cons-of-static-and-
interactive-charts, Březen 2023, [cit. 14-04-2024].

[16] Raggett, D.: Objects, Images, and Applets in HTML documents. [online]
https://www.w3.org/TR/html401/struct/objects.html, Březen 2018,
[cit. 11-04-2024].

[17] Schiller, T.: A Brief History of Browser Extensibility. [online]
https://medium.com/brick-by-brick/a-brief-history-of-
browser-extensibility-bcfeb4181c9a, Březen 2021, [cit. 14-04-2024].

[18] Root, E.: The history of Flash. [online] https://www.kaspersky.com/
blog/life-and-death-of-adobe-flash/45906/, Říjen 2022, [cit. 14-04-
2024].

[19] Morkes, D.: Java Applet krok za krokem. [online] https:
//www.interval.cz/clanky/java-applet-krok-za-krokem/, Září
2002, [cit. 15-04-2024].

[20] Byrne, M.: The Rise and Fall of the Java Applet. [online]
https://www.vice.com/en/article/8q8n3k/a-brief-history-of-
the-java-applet, Únor 2016, [cit. 15-04-2024].

[21] Fulton, S.: HTML5 Canvas. Sebastopol, CA: O’Reilly Media, druhé vy-
dání, Květen 2013, ISBN 978-1-449-33498-7.

[22] Foundation, M.: SVG Tutorial – SVG: Scalable Vector Graphics. [online]
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial, Bře-
zen 2023, [cit. 16-04-2024].

[23] Foundation, M.: SVG API – Web APIs. [online] https:
//developer.mozilla.org/en-US/docs/Web/API/SVG_API, Prosinec
2023, [Accessed 23-04-2024].

[24] Foundation, M.: HTML: HyperText Markup Language. [online] https:
//developer.mozilla.org/en-US/docs/Web/HTML, Březen 2024, [cit. 20-
03-2024].

[25] Lie, H. W.; Bos, B.: Cascading style sheets:Designing for the web. Boston,
MA: Addison Wesley, druhé vydání, Červenec 1999, ISBN 0-201-59625-3.

58

https://support.microsoft.com/en-us/office/available-chart-types-in-office-a6187218-807e-4103-9e0a-27cdb19afb90
https://support.microsoft.com/en-us/office/available-chart-types-in-office-a6187218-807e-4103-9e0a-27cdb19afb90
https://support.microsoft.com/en-us/office/available-chart-types-in-office-a6187218-807e-4103-9e0a-27cdb19afb90
https://www.adobe.com/creativecloud/file-types/image/raster.html
https://www.adobe.com/creativecloud/file-types/image/raster.html
https://www.adobe.com/creativecloud/file-types/image/vector.html
https://www.adobe.com/creativecloud/file-types/image/vector.html
https://www.datylon.com/blog/pros-and-cons-of-static-and-interactive-charts
https://www.datylon.com/blog/pros-and-cons-of-static-and-interactive-charts
https://www.w3.org/TR/html401/struct/objects.html
https://medium.com/brick-by-brick/a-brief-history-of-browser-extensibility-bcfeb4181c9a
https://medium.com/brick-by-brick/a-brief-history-of-browser-extensibility-bcfeb4181c9a
https://www.kaspersky.com/blog/life-and-death-of-adobe-flash/45906/
https://www.kaspersky.com/blog/life-and-death-of-adobe-flash/45906/
https://www.interval.cz/clanky/java-applet-krok-za-krokem/
https://www.interval.cz/clanky/java-applet-krok-za-krokem/
https://www.vice.com/en/article/8q8n3k/a-brief-history-of-the-java-applet
https://www.vice.com/en/article/8q8n3k/a-brief-history-of-the-java-applet
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/SVG_API
https://developer.mozilla.org/en-US/docs/Web/API/SVG_API
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML

Literatura

[26] Achour, M.: JavaScript | MDN. [online] https://
developer.mozilla.org/en-US/docs/Web/JavaScript, [cit. 8-03-2024].

[27] PHP: PHP Manual. [online] https://www.php.net/manual/en/, March 17
2024, [cit. 19-03-2024].

[28] Project, S.: Symfony, High Performance PHP Framework for Web Deve-
lopment. [online] https://symfony.com/at-a-glance, 2024, [cit. 21-03-
2024].

[29] documentation, J.: Java Documentation – Get Started. [online] https:
//docs.oracle.com/en/java/, [cit. 20-03-2024].

[30] Nourie, D.: Java Technologies for Web Applications. [online] https://
www.oracle.com/technical-resources/articles/java/webapps.html,
Listopad 2006, [cit. 21-03-2024].

[31] SpringFramework: Spring Framework. [online] https://spring.io/
projects/spring-framework, [cit. 20-03-2024].

[32] Nodejs: Node.js – About Node.js®. [online] https://nodejs.org/en/
about, 2024, [cit. 21-03-2024].

[33] Karrys, L.: About npm | npm Docs. [online] https://docs.npmjs.com/
about-npm, Říjen 2023, [cit. 15-04-2024].

[34] MySQL: MySQL :: MySQL 8.3 Reference Manual :: 1.2.1 What
is MySQL? [online] https://dev.mysql.com/doc/refman/8.3/en/what-
is-mysql.html, Prosinec 2023, [cit. 21-03-2024].

[35] PostgreSQL: PostgreSQL: Documentation [online]. [online] https://
www.postgresql.org/docs, [cit. 19-03-2024].

[36] MongoDB: MongoDB Manual. [online] https://www.mongodb.com/docs/
manual, [cit. 19-03-2024].

[37] Smus, B.: Improving HTML5 Canvas performance. [online] https://
web.dev/articles/canvas-performance, Srpen 2011, [Accessed 23-04-
2024].

[38] Koďousková, B.: Co je to API a jaké jsou možnosti jeho využití? [online]
https://www.rascasone.com/cs/blog/co-je-api, Duben 2024, [Acces-
sed 14-05-2024].

[39] Schapira, B.: First Contentful Paint (FCP), Start Render, First Paint. How
to properly measure the beginning of page rendering? [online] https://
blog.dareboost.com/en/2019/09/first-contentful-paint-fcp/, Září
2019, [Accessed 16-05-2024].

[40] Project, D.: DoctrineMongoDBBundle. [online] https://www.doctrine-
project.org/projects/doctrine-mongodb-bundle/en/5.0/
index.html, Leden 2024, [Accessed 22-04-2024].

[41] a další, L. K. S.: FOSRestBundle. [online] https://github.com/
FriendsOfSymfony/FOSRestBundle, 2024, [Accessed 14-05-2024].

59

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.php.net/manual/en/
https://symfony.com/at-a-glance
https://docs.oracle.com/en/java/
https://docs.oracle.com/en/java/
https://www.oracle.com/technical-resources/articles/java/webapps.html
https://www.oracle.com/technical-resources/articles/java/webapps.html
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework
https://nodejs.org/en/about
https://nodejs.org/en/about
https://docs.npmjs.com/about-npm
https://docs.npmjs.com/about-npm
https://dev.mysql.com/doc/refman/8.3/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.3/en/what-is-mysql.html
https://www.postgresql.org/docs
https://www.postgresql.org/docs
https://www.mongodb.com/docs/manual
https://www.mongodb.com/docs/manual
https://web.dev/articles/canvas-performance
https://web.dev/articles/canvas-performance
https://www.rascasone.com/cs/blog/co-je-api
https://blog.dareboost.com/en/2019/09/first-contentful-paint-fcp/
https://blog.dareboost.com/en/2019/09/first-contentful-paint-fcp/
https://www.doctrine-project.org/projects/doctrine-mongodb-bundle/en/5.0/index.html
https://www.doctrine-project.org/projects/doctrine-mongodb-bundle/en/5.0/index.html
https://www.doctrine-project.org/projects/doctrine-mongodb-bundle/en/5.0/index.html
https://github.com/FriendsOfSymfony/FOSRestBundle
https://github.com/FriendsOfSymfony/FOSRestBundle

Literatura

[42] Project, S.: Documentation – Twig – The flexible, fast, and secure PHP
template engine. [online] https://twig.symfony.com/doc/, [2020], [Ac-
cessed 14-05-2024].

[43] Buruk, B.: Mastering Web Application Performance: A Compre-
hensive Guide for Quick Wins and Lasting Improvements. [on-
line] https://medium.com/@burak.bburuk/supercharge-your-
web-application-unleashing-the-hidden-tricks-to-boost-
performance-c66ac0e265bd, Červenec 2023, [Accessed 13-05-2024].

[44] Prince, S.: How Poor Website Design Could Affect Your Per-
formance. [online] https://www.clickthrough.digital/poor-website-
design-affecting-performance/, Září 2023, [Accessed 13-05-2024].

60

https://twig.symfony.com/doc/
https://medium.com/@burak.bburuk/supercharge-your-web-application-unleashing-the-hidden-tricks-to-boost-performance-c66ac0e265bd
https://medium.com/@burak.bburuk/supercharge-your-web-application-unleashing-the-hidden-tricks-to-boost-performance-c66ac0e265bd
https://medium.com/@burak.bburuk/supercharge-your-web-application-unleashing-the-hidden-tricks-to-boost-performance-c66ac0e265bd
https://www.clickthrough.digital/poor-website-design-affecting-performance/
https://www.clickthrough.digital/poor-website-design-affecting-performance/

Příloha A
Seznam použitých zkratek

SVG Scalable Vector Graphics

GIF Graphics Interchange Format

REST Representational State Transfer

API Application Programming Interface

XML Extensible Markup Language

CSV Comma Separated Values

XLS Excel spreadsheet

JPEG Joint Photographic Experts Group

PNG Portable Network Graphics

HTML Hypertext Markup Language

CSS Cascading Style Sheets

W3C World Wide Web Consortium

JIT Jist-in-time

AJAX Asynchronous JavaScript and XML

OOP Objektově Orientované Programování

JVM Java Virtual Machine

JSP JavaServer Pages

SQL Structural Query Language

JSON JavaScript Object Notattion

ACID Atomicity, Consistency, Isolation, Durability

GIMP GNU Image Manipulation Program

61

A. Seznam použitých zkratek

RAM Random Access Memory

DOM Document Object Model

GUI Graphical User Interface

62

Příloha B
Obsah příloh

readme.txt.....................................stručný popis obsahu CD
src

impl......................................zdrojové kódy implementace
thesis zdrojová forma práce ve formátu LATEX

text...text práce
thesis.pdf................................text práce ve formátu PDF

63

	Úvod
	Cíl práce
	Analýza
	Podobné aplikace
	Google charts
	Prostředí
	Zprovoznění

	Highcharts
	Prostředí
	Zprovoznění

	Charts.js
	Prostředí
	Zprovoznění

	Infogram
	Prostředí
	Zprovoznění

	LiveGap Charts
	Prostředí
	Zprovoznění

	Shrnutí

	Vizualizace dat
	Bodové
	Spojnicové
	Plošné
	Koláčové
	Sloupcové
	Skládané

	Způsoby vykreslování webových grafů
	Druh grafiky
	Rastrová grafika
	Vektorová grafika

	Statické grafy
	HTML image map

	Pluginy
	Flash Player
	Java applet

	Canvas
	SVG

	Případy užití
	Požadavky
	Funkční požadavky
	Nefunkční požadavky
	Priorita požadavků

	Volba technologií
	Vykreslování grafů
	Frontend
	HTML
	CSS
	JavaScript
	Shrnutí

	Backend
	PHP
	Java
	Node.js
	Shrnutí

	Databázové technologie
	MySQL
	PostgreSQL
	MongoDB
	Shrnutí

	Návrh
	Vykreslování grafů
	Základní vrstva
	Detekční vrstva
	Animační vrstva

	Aplikace na vytváření grafů
	Stránka pro úpravu grafu
	Uživatelské účty

	API
	Databáze
	Doménový model
	Uživatel
	Graf

	Rozšíření

	Realizace
	Struktura projektu
	Vykreslování
	Základní tvary
	Základní třída grafu
	Atributy:
	Funkce:

	Zoom
	Provedené optimalizace
	Asynchronní procesy

	Backend
	Dodatečné balíčky
	Doctrine MongoDB Bundle
	FOS REST Bundle
	Twig

	API

	Nasazení
	Webový Server
	Databázový Systém

	Testování
	Testování nároků na výkon
	Testovací prostředí a metodika
	Rychlost vykreslování grafů
	Infogram
	Google Charts
	Charts.js
	Highcharts
	Nové řešení

	Paměťová náročnost
	Infogram
	Google Charts
	Highcharts
	Charts.js
	Nové řešení

	Testování s uživateli
	Registrace a přihlášení
	Vytvoření nového grafu
	Vytvoření grafu:
	Vložení dat:
	Úprava nového grafu:

	Export dat
	Interakce s grafem:

	Výsledky

	Závěr
	Literatura
	Seznam použitých zkratek
	Obsah příloh

