Al learning Tetris using genetic algorithm

FrantiSek Spacek

spacefrl@fit.cvut.cz

7.1.2024

1) Introduction

The objective of this semestral work is to
teach a neural network how to play Tetris using a
genetic algorithm. This requires a creation of a basic
game environment. Variables in this environment
can be modified via a GUI. To help with this task,
the app has to have a way to visualize the Al
progress and a way to save networks for later use.

Many such projects exist, but they don't let
the Al play like a real player. Instead it is being fed
precalculated positions and the neural network only
chooses one of them. This work will instead allow
the Al to move the piece at any time with the
gradually falling down, thus playing like a living
person.

The result of this work should ideally be a
neural network that is able to play Tetris like without
making mistakes and potentially surviving forever.

2) Input and output

The play area has
default size 15 * 8 which is less
than normal, but it should

The input for the neural
network will be the block type,
rotation and position. Instead of
telling the Al about every block in
the grid, it will only be given a list
of the highest blocks in each
column to minimize the

amount of data. It will not see holes under some
pieces, however it should be able to play in such a
way that these never even appear. The network has
four output nodes for moving left, right, rotating and
dropping the block.

3) Possible challenges

The main problem of teaching the neural
network is that there is no good way to grade it's
individual decisions. Instead it has to play the whole
game. This makes it difficult to use backpropagation.

Instead a genetic algorithm will be used
which will play hundreds of games at the same time
and using the results for the next generation. This
will most likely lead to very slow learning as every
change will be a shot into the dark.

For that reason, the first attempts will let the
Al play with only one type of block to make it easier
a quicker. Slowly adding block in next attempts.

4) Evaluation criteria

The goal is to only learn how to play. It is
not required to have the Al complete multiple lines
at once to get additional points. The score of the
neural network is calculated at each step as the y
value of the falling block with bonus for each block
placed. This will push the neural network to place as
many block as low as possible, in the best case
completing lines and staying on the ground. During
the testing, it became apparent that the Al has
trouble with rotating the block so it often decides to
not do it at all. To push it towards the desired goal, it
will receive a tiny reward for each rotation. To
prevent the creation of holes (covered places where
no block can be placed), points will be deducted
when a hole appears.

5) Selection

At the begging the selection was done by
taking the better half and killing the rest. | found this
to not be a good approach as it lead to the algorithm
being stuck in a dead-end.

The approach | settled with is a
combination of elitist and roulette wheel selection.
This keeps a few of the best performing individuals
unchanged and fills the rest with random clones
(with slight mutations) where there is a bigger
chance the better performing networks will be
selected, but gives a chance to all the other ones
and increases the diversity. To allow for enough
changes to occur, a large population is required, in
this case it was from one hundred to over a
thousand for more complex tasks.

6) Results

The neural network has successfully
learned how to play with a single piece. This took
different amounts of time depending on the shape. It
was able to play perfectly with O and | pieces in just
two generations. Other shapes took a bit longer.
The size of the network was two hidden layers with
twenty neurons each.

Complications arose with multiple pieces.
A bigger network was required which unfortunately
dramatically increased the time required. It is
possible to teach it how to play with two pieces,
the most | managed was four which took a very
long time.

The Al was never able to learn how to play
well with all pieces. Only trying to fit as many as
possible and completing a few lines at best.

7) Conclusion

The project was a mixed success. The
neural networks and the genetic algorithm work
without trouble. The history of best and average
results is displayed in a graph along with additional
info about current generation.

It is possible to modify the environment
using a graphical user interface and it's possible to
save and load networks.

unpractical when compared to other possible
solutions, like letting the Al choose from a few
preselected options. To make the real time playing
neural network possible, something more
sophisticated than simple genetic algorithm should
be used. That is a direction for possible future
improvements.

8) Sources

Python Al: How to Build a Neural Network & Make Predictions [online]. [cit. 2023-12-7].
Dostupné z: https://realpython.com/python-ai-neural-network/

Tetris [online]. 2021 [cit. 2023-11-20]. Dostupné z: https://github.com/rajatdiptabiswas/tetris-pygame

How To Create a Neural Network In Python: With And Without Keras [online]. 2022 [cit. 2024-01-

02]. Dostupné z: https://www.activestate.com/resources/quick-reads/how-to-create-a-neural-
network-in-python-with-and-without-keras/

Pygame tutorials [online]. 2021 [cit. 2024-01-04]. Dostupné z:
https://github.com/russs123/pygame_tutorials

Stack overflow [online]. 2017 [cit. 2024-01-07]. Dostupné z:
https://stackoverflow.com/guestions/46390231

Beating the world record in Tetris (GB) with genetics algorithm [online]. ANH BUI, Duc. 2020 [cit. 2024-01-
07]. Dostupné z: https://towardsdatascience.com/beating-the-world-record-in-tetris-gb-with-genetics-
algorithm-6c0b2f5ace9b

